
< previous: Online Help Toc (/wiki/index.php?
title=Online_Help_Toc)

next: About FreeCAD > (/wiki/index.php?title=About_FreeCAD)

Manual
This is the FreeCAD manual. It includes the essential parts out of the
FreeCAD documentation wiki (/wiki/index.php?title=Main_Page). It is made
primarily to be printed as one big document, so, if you are reading this
online, you might prefer to head directly to the Online help
(/wiki/index.php?title=Online_Help_Toc) version, which is easier to browse.

Welcome to the FreeCAD on-line help
This document has been automatically created from the contents of the
official FreeCAD wiki documentation, which can be read online at
http://www.freecadweb.org/wiki/index.php?title=Main_Page
(http://www.freecadweb.org/wiki/index.php?title=Main_Page). Since the
wiki is actively maintained and continuously developed by the FreeCAD
community of developers and users, you may find that the online version
contains more or newer information than this document. There you will also
find in-progress translations of this documentation in several languages.
But nevertheless, we hope you will find here all information you need. In
case you have questions you can't find answers for in this document, have a
look on the FreeCAD forum (http://forum.freecadweb.org/index.php), where
you can maybe find your question answered, or someone able to help you.

How to use

This document is divided into several sections: introduction, usage, scripting
and development, the last three address specifically the three broad
categories of users of FreeCAD: end-users, who simply want to use the
program, power-users, who are interested by the scripting capabilities of
FreeCAD and would like to customize some of its aspects, and developers,
who consider FreeCAD as a base for developing their own applications. If
you are completely new to FreeCAD, we suggest you to start simply from the
introduction.

Contribute

As you may have experienced sometimes, programmers are really bad help
writers! For them it is all completely clear because they made it that way.
Therefore it's vital that experienced users help us to write and revise the
documentation. Yes, we mean you! How, you might ask? Just go to the Wiki
at http://www.freecadweb.org/wiki/index.php
(http://www.freecadweb.org/wiki/index.php) in the User section. You will
need a FreeCAD wiki account to log in. Ask on the forum or on the irc
channel for wiki write permission (the wiki is write-protected to avoid
spamming) and we will create an account for you. Currently the wiki account
is separate to the forum account but we will create the wiki account with the
same name as your forum account. Then you can start editing! Also, check
out the page at http://www.freecadweb.org/wiki/index.php?
title=Help_FreeCAD (http://www.freecadweb.org/wiki/index.php?
title=Help_FreeCAD) for more ways you can help FreeCAD.

 (/wiki/index.php?

title=File:Crystal_Clear_app_tutorials.png)

Page 1 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Index (/wiki/index.php?title=Online_Help_Toc)

Introduction

(/wiki/index.php?title=File:Freecad_default.jpg)
FreeCAD is a general purpose parametric 3D CAD
(http://en.wikipedia.org/wiki/CAD) modeler. The development is completely
Open Source (http://en.wikipedia.org/wiki/Open_source) (LGPL License).
FreeCAD is aimed directly at mechanical engineering
(http://en.wikipedia.org/wiki/Mechanical_engineering) and product design
(http://en.wikipedia.org/wiki/Product_design) but also fits in a wider range
of uses around engineering, such as architecture or other engineering
specialties.

FreeCAD features tools similar to Catia (http://en.wikipedia.org/wiki/Catia),
SolidWorks (http://en.wikipedia.org/wiki/Solidworks) or Solid Edge
(http://en.wikipedia.org/wiki/Solid_Edge), and therefore also falls into the
category of MCAD (http://en.wikipedia.org/wiki/CAD), PLM
(http://en.wikipedia.org/wiki/Product_Lifecycle_Management), CAx
(http://en.wikipedia.org/wiki/CAx) and CAE
(http://en.wikipedia.org/wiki/Computer-aided_engineering). It is a feature
based parametric modeler
(http://en.wikipedia.org/wiki/Parametric_feature_based_modeler) with a
modular software architecture which makes it easy to provide additional
functionality without modifying the core system.

As with many modern 3D CAD (http://en.wikipedia.org/wiki/CAD) modelers
it has many 2D components in order to sketch 2D shapes or extract design
details from the 3D model to create 2D production drawings, but direct 2D
drawing (like AutoCAD LT
(http://en.wikipedia.org/wiki/AutoCAD#AutoCAD_LT)) is not the focus,
neither are animation or organic shapes (like Maya
(http://en.wikipedia.org/wiki/Maya_(software)), 3ds Max
(http://en.wikipedia.org/wiki/3ds_Max), Blender
(http://en.wikipedia.org/wiki/Blender_%28software%29) or Cinema 4D
(http://en.wikipedia.org/wiki/CINEMA_4D)), although, thanks to its wide
adaptability, FreeCAD might become useful in a much broader area than its
current focus.

FreeCAD makes heavy use of all the great open-source libraries that exist
out there in the field of Scientific Computing
(http://en.wikipedia.org/wiki/Scientific_Computation). Among them are
OpenCascade (http://OpenCascade.org), a powerful CAD kernel, Coin3D
(http://www.Coin3D.org), an incarnation of Open Inventor
(http://en.wikipedia.org/wiki/Open_Inventor), Qt
(http://www.qtsoftware.com/), the world-famous UI framework, and Python
(http://www.python.org), one of the best scripting languages available.
FreeCAD itself can also be used as a library by other programs.

Page 2 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Online Help Startpage (/wiki/index.php?
title=Online_Help_Startpage)

next: Feature list > (/wiki/index.php?title=Feature_list)

FreeCAD is also fully multi-platform (http://en.wikipedia.org/wiki/Cross-
platform), and currently runs flawlessly on Windows and Linux/Unix and
Mac OSX systems, with the exact same look and functionality on all
platforms.

For more information about FreeCAD's capabilities, take a look at the
Feature list (/wiki/index.php?title=Feature_list), the latest release notes
(/wiki/index.php?title=Getting_started#What.27s_new) or the Getting started
(/wiki/index.php?title=Getting_started) articles, or see more screenshots
(/wiki/index.php?title=Screenshots).

About the FreeCAD project

The FreeCAD project was started as far as 2001, as described in its history
(/wiki/index.php?title=History) page.

FreeCAD is maintained and developed by a community of enthusiastic
developers and users (see the contributors (/wiki/index.php?
title=Contributors) page). They work on FreeCAD voluntarily, in their free
time. They cannot guarantee that FreeCAD contains or will contain
everything you might wish, but they will usually do their best! The
community gathers on the FreeCAD forum (http://forum.freecadweb.org),
where most of the ideas and decisions are discussed. Feel free to join us
there!

Index
(/wiki/index.php?title=Online_Help_Toc)

This is an extensive, hence not complete, list of features FreeCAD
implements. If you want to look into the future see the Development
roadmap (/wiki/index.php?title=Development_roadmap) for a quick
overview of what's coming next. Also, the Screenshots (/wiki/index.php?
title=Screenshots) are a nice place to go.

Release notes

◾ Release 0.11 (/wiki/index.php?title=Release_notes_011) - March 2011
◾ Release 0.12 (/wiki/index.php?title=Release_notes_012) - December

2011
◾ Release 0.13 (/wiki/index.php?title=Release_notes_013) - January 2013
◾ Release 0.14 (/wiki/index.php?title=Release_notes_014) - March 2014
◾ Release 0.15 (/wiki/index.php?title=Release_notes_015) - March 2015
◾ Release 0.16 (/wiki/index.php?title=Release_notes_016) - April 2016

Key features

◾ A complete Open
CASCADE Technology

(http://en.wikipedia.org/wiki/Open_CASCADE)-based geometry kernel
allowing complex 3D operations on complex shape types, with native
support for concepts like brep, nurbs curves and surfaces, a wide range
of geometric entities, boolean operations and fillets, and built-in
support of STEP and IGES formats

◾ A full parametric
model. All FreeCAD
objects are natively
parametric, which

means their shape can be based on properties (/wiki/index.php?

 (/wiki/index.php?title=File:Feature1.jpg)

 (/wiki/index.php?title=File:Feature3.jpg)

Page 3 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

title=Property) or even depend on other objects, all changes being
recalculated on demand, and recorded by the undo/redo stack. New
object types can be added easily, that can even be fully programmed in
Python (/wiki/index.php?title=Scripted_objects)

◾ A modular
architecture that
allow plugins
(modules) to add

functionality to the core application. Those extensions can be as
complex as whole new applications programmed in C++ or as simple as
Python scripts (/wiki/index.php?title=Power_users_hub) or self-
recorded macros (/wiki/index.php?title=Macros). You have complete
access from the Python built-in interpreter, macros or external scripts
to almost any part of FreeCAD, being geometry creation and
transformation (/wiki/index.php?title=Topological_data_scripting), the
2D or 3D representation of that geometry (scenegraph
(/wiki/index.php?title=Scenegraph)) or even the FreeCAD interface
(/wiki/index.php?title=PySide)

◾ Import/export to
standard formats
such as STEP

(http://en.wikipedia.org/wiki/ISO_10303), IGES
(http://en.wikipedia.org/wiki/IGES), OBJ
(http://en.wikipedia.org/wiki/Obj), STL
(http://en.wikipedia.org/wiki/STL_%28file_format%29), DXF
(http://en.wikipedia.org/wiki/Dxf), SVG
(http://en.wikipedia.org/wiki/Svg), STL
(http://en.wikipedia.org/wiki/STL_(file_format)), DAE
(http://en.wikipedia.org/wiki/COLLADA), IFC
(http://en.wikipedia.org/wiki/Industry_Foundation_Classes) or OFF
(http://people.sc.fsu.edu/~jburkardt/data/off/off.html), NASTRAN
(http://en.wikipedia.org/wiki/NASTRAN), VRML
(http://en.wikipedia.org/wiki/VRML) in addition to FreeCAD's native
Fcstd file format (/wiki/index.php?title=Fcstd_file_format). The level of
compatibility between FreeCAD and a given file format can vary, since it
depends on the module that implements it.

◾ A Sketcher
(/wiki/index.php?

title=Sketcher_Workbench) with constraint-solver, allowing to sketch
geometry-constrained 2D shapes. The sketcher currently allows you to
build several types of constrained geomerty, and use them as a base to
build other objects throughout FreeCAD.

◾ A Robot simulation
(/wiki/index.php?

title=Robot_Workbench) module that allows to study robot movements.
The robot module already has an extended graphical interface allowing
GUI-only workflow.

◾ A Drawing sheets
(/wiki/index.php?
title=Drawing_Module)
module that permit to

put 2D views of your 3D models on a sheet. This modules then produces

 (/wiki/index.php?title=File:Feature4.jpg)

 (/wiki/index.php?title=File:Feature5.jpg)

 (/wiki/index.php?title=File:Feature7.jpg)

 (/wiki/index.php?title=File:Feature9.jpg)

 (/wiki/index.php?title=File:Feature8.jpg)

Page 4 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

ready-to-export SVG or PDF sheets. The module is still sparse but
already features a powerful Python functionality.

◾ A Rendering

(/wiki/index.php?title=Raytracing_Module) module that can export 3D
objects for rendering with external renderers. Currently only supports
povray (http://en.wikipedia.org/wiki/POV-Ray) and LuxRender
(http://en.wikipedia.org/wiki/LuxRender), but is expected to be
extended to other renderers in the future.

◾ An Architecture
(/wiki/index.php?

title=Arch_Module) module that allows BIM
(http://en.wikipedia.org/wiki/Building_Information_Modeling)-like
workflow, with IFC
(http://en.wikipedia.org/wiki/Industry_Foundation_Classes)
compatibility. The making of the Arch module is heavily discussed by
the community here (http://forum.freecadweb.org/viewtopic.php?
f=10&t=821).

General features

◾ FreeCAD is multi-platform. It runs and behaves exactly the same way
on Windows Linux and Mac OSX platforms.

◾ FreeCAD is a full GUI application. FreeCAD has a complete Graphical
User Interface based on the famous Qt (http://www.qtsoftware.com/)
framework, with a 3D viewer based on Open Inventor
(http://en.wikipedia.org/wiki/Open_Inventor), allowing fast rendering
of 3D scenes and a very accessible scene graph representation.

◾ FreeCAD also runs as a command line application, with low memory
footprint. In command line mode, FreeCAD runs without its interface,
but with all its geometry tools. It can be, for example, used as server to
produce content for other applications.

◾ FreeCAD can be imported as a Python module (/wiki/index.php?
title=Embedding_FreeCAD), inside other applications that can run
python scripts, or in a python console. Like in console mode, the
interface part of FreeCAD is unavailable, but all geometry tools are
accessible.

◾ Workbench concept: In the FreeCAD interface, tools are grouped by
workbenches (/wiki/index.php?title=Workbenches). This allows to
display only the tools used to accomplish a certain task, keeping the
workspace uncluttered and responsive, and the application fast to load.

◾ Plugin/Module framework for late loading of features/data-types.
FreeCAD is divided into a core application and modules, that are loaded
only when needed. Almost all the tools and geometry types are stored
in modules. Modules behave like plugins, and can be added or removed
to an existing installation of FreeCAD.

◾ Parametric associative document objects: All objects in a FreeCAD
document can be defined by parameters. Those parameters can be
modified on the fly, and recomputed anytime. The relationship between

 (/wiki/index.php?title=File:Feature-raytracing.jpg)

 (/wiki/index.php?title=File:Feature-arch.jpg)

Page 5 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

objects is also stored, so modifying one object also modifies its
dependent objects.

◾ Parametric primitive creation (box, sphere, cylinder, etc)

◾ Graphical modification operations like translation, rotation, scaling,
mirroring, offset (trivial or after Jung/Shin/Choi
(http://www.ann.jussieu.fr/~frey/papers/meshing/Jung%20W.,%20Self-
intersection%20removal%20in%20triangular%20mesh%
20offsetting.pdf)) or shape conversion, in any plane of the 3D space

◾ Boolean operations
(http://en.wikipedia.org/wiki/Constructive_solid_geometry) (union,
difference, intersect)

◾ Graphical creation of simple planar geometry like lines, wires,
rectangles, arcs or circles in any plane of the 3D space

◾ Modeling with straight or revolution extrusions, sections and fillets.

◾ Topological components like vertices, edges, wires and planes (via
python scripting).

◾ Testing and repairing tools for meshes: solid test, non-two-manifolds
test, self-intersection test, hole filling and uniform orientation.

◾ Annotations like texts or dimensions

◾ Undo/Redo framework: Everything is undo/redoable, with access to
the undo stack, so multiple steps can be undone at a time.

◾ Transaction management: The undo/redo stack stores document
transactions and not single actions, allowing each tool to define exactly
what must be undone or redone.

◾ Built-in scripting (/wiki/index.php?title=Scripting) framework:
FreeCAD features a built-in Python (http://www.python.org/)
interpreter, and an API that covers almost any part of the application,
the interface, the geometry and the representation of this geometry in
the 3D viewer. The interpreter can run single commands up to complex
scripts, in fact entire modules can even be programmed completely in
Python.

◾ Built-in Python console with syntax highlighting, autocomplete and
class browser: Python commands can be issued directly in FreeCAD and
immediately return results, permitting scriptwriters to test functionality
on the fly, explore the contents of the modules and easily learn about
FreeCAD internals.

◾ User interaction mirroring on the console: Everything the user does in
the FreeCAD interface executes python code, which can be printed on
the console and recorded in macros.

◾ Full macro recording & editing: The python commands issued when
the user manipulates the interface can then be recorded, edited if
needed, and saved to be reproduced later.

◾ Compound (ZIP based) document save format: FreeCAD documents
saved with .fcstd (/wiki/index.php?title=Fcstd_file_format) extension
can contain many different types of information, such as geometry,
scripts or thumbnail icons. The .fcstd file is itself a zip container, so a
saved FreeCAD file has already been compressed.

◾ Fully customizable/scriptable Graphical User Interface. The Qt
(http://www.qtsoftware.com)-based interface of FreeCAD is entirely
accessible via the python interpreter. Aside from the simple functions

Page 6 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: About FreeCAD (/wiki/index.php?title=About_FreeCAD)
next: Install on Windows > (/wiki/index.php?
title=Install_on_Windows)

that FreeCAD itself provides to workbenches, the whole Qt framework is
accessible too, allowing any operation on the GUI, such as creating,
adding, docking, modifying or removing widgets and toolbars.

◾ Thumbnailer (Linux systems only at the moment): The FreeCAD
document icons show the contents of the file in most file manager
applications such as gnome's nautilus.

◾ A modular MSI installer allows flexible installations on Windows
systems. Packages for Ubuntu systems are also maintained.

In development

◾ An Assembly

(/wiki/index.php?title=Assembly_project) module that allows to work
with multiple projects, multiple shapes, multiple documents, multiple
files, multiple relationships...

◾ A Cam Module
(/wiki/index.php?
title=Cam_Module)
dedicated to

mechanical machining like milling, and will be able to output, display
and adjust G code (http://en.wikipedia.org/wiki/G-code). This module
is currently in planning state.

Extra Workbenches
Power users have created various custom external workbenches
(/wiki/index.php?title=External_workbenches).

Index (/wiki/index.php?title=Online_Help_Toc)

Installation

Install on Windows
The easiest way to install FreeCAD on Windows is to download the installer
below.

 (/wiki/index.php?title=File:Windows.png) Windows
(https://github.com/FreeCAD/FreeCAD/releases/download/0.16/FreeCAD.0.16.6704.oc449d7-
WIN-x86_installer.exe) 32 bits (/wiki/index.php?title=File:Windows.png)
Windows
(https://github.com/FreeCAD/FreeCAD/releases/download/0.16/FreeCAD-0.16.6704.oc449d7-
WIN-x64_Installer-1.exe) 64 bits

After downloading the .msi (Microsoft Installer) file, just double-click on it to
start the installation process.

Below is more information about technical options. If it looks daunting,
don't worry! Most Windows users will not need anything more than the .msi
to install FreeCAD and Get started (/wiki/index.php?title=Getting_started)!

 (/wiki/index.php?title=File:Feature-assembly.jpg)

 (/wiki/index.php?title=File:Feature-CAM.jpg)

Page 7 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Simple Microsoft Installer Installation

The easiest way to install FreeCAD on Windows is by using the installer
above. This page describes the usage and the features of the Microsoft
Installer for more installation options.

If you would like to download either a 64 bit or unstable development
version, see the Download (/wiki/index.php?title=Download) page.

Command Line Installation

With the msiexec.exe command line utility, additional features are available,
like non-interactive installation and administrative installation.
Non-interactive Installation

With the command line

 msiexec /i FreeCAD<version>.msi

installation can be initiated programmatically. Additional parameters can be
passed at the end of this command line, like

msiexec /i FreeCAD-2.5.msi TARGETDIR=r:\FreeCAD25

Limited user interface

The amount of user interface that installer displays can be controlled
with /q options, in particular:

◾ /qn - No interface
◾ /qb - Basic interface - just a small progress dialog
◾ /qb! - Like /qb, but hide the Cancel button
◾ /qr - Reduced interface - display all dialogs that don't require user

interaction (skip all modal dialogs)
◾ /qn+ - Like /qn, but display "Completed" dialog at the end
◾ /qb+ - Like /qb, but display "Completed" dialog at the end

Target directory

The property TARGETDIR determines the root directory of the FreeCAD
installation. For example, a different installation drive can be specified with

TARGETDIR=R:\FreeCAD25

The default TARGETDIR is [WindowsVolume\Programm Files\]
FreeCAD<version>.
Installation for All Users

Adding

ALLUSERS=1

causes an installation for all users. By default, the non-interactive
installation install the package just for the current user, and the interactive
installation offers a dialog which defaults to "all users" if the user is
sufficiently privileged.
Feature Selection

A number of properties allow selection of features to be installed,
reinstalled, or removed. The set of features for the FreeCAD installer is

◾ DefaultFeature - install the software proper, plus the core libraries
◾ Documentation - install documentation
◾ Source code - install the sources
◾ ... ToDo

Page 8 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

In addition, ALL specifies all features. All features depend on
DefaultFeature, so installing any feature automatically installs the default
feature as well. The following properties control features to be installed or
removed

◾ ADDLOCAL - list of feature to be installed on the local machine
◾ REMOVE - list of features to be removed
◾ ADDDEFAULT - list of features added in their default configuration

(which is local for all FreeCAD features)
◾ REINSTALL - list of features to be reinstalled/repaired
◾ ADVERTISE - list of feature for which to perform an advertise

installation
There are a few additional properties available; see the MSDN
documentation for details.

With these options, adding

ADDLOCAL=Extensions

installs the interpreter itself and registers the extensions, but does not
install anything else.

Uninstallation

With

msiexec /x FreeCAD<version>.msi

FreeCAD can be uninstalled. It is not necessary to have the MSI file available
for uninstallation; alternatively, the package or product code can also be
specified. You can find the product code by looking at the properties of the
Uninstall shortcut that FreeCAD installs in the start menu.

Administrative installation

With

msiexec /a FreeCAD<version>.msi

an "administrative" (network) installation can be initiated. The files get
unpacked into the target directory (which should be a network directory),
but no other modification is made to the local system. In addition, another
(smaller) msi file is generated in the target directory, which clients can then
use to perform a local installation (future versions may also offer to keep
some features on the network drive altogether).

Currently, there is no user interface for administrative installations, so the
target directory must be passed on the command line.

There is no specific uninstall procedure for an administrative install - just
delete the target directory if no client uses it anymore.

Advertisement

With

msiexec /jm FreeCAD<version>.msi

it would be possible, in principle, to "advertise" FreeCAD to a machine
(with /ju to a user). This would cause the icons to appear in the start menu,
and the extensions to become registered, without the software actually
being installed. The first usage of a feature would cause that feature to be
installed.

The FreeCAD installer currently supports just advertisement of start menu
entries, but no advertisement of shortcuts.

Automatic Installation on a Group of Machines

With Windows Group Policy, it is possible to automatically install FreeCAD an

Page 9 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Feature list (/wiki/index.php?title=Feature_list)
next: Install on Unix > (/wiki/index.php?title=Install_on_Unix)

a group of machines. To do so, perform the following steps:

1. Log on to the domain controller
2. Copy the MSI file into a folder that is shared with access

granted to all target machines.
3. Open the MMC snapin "Active Directory users and computers"
4. Navigate to the group of computers that need FreeCAD
5. Open Properties
6. Open Group Policies
7. Add a new policy, and edit it
8. In Computer Configuration/Software Installation, choose

New/Package
9. Select the MSI file through the network path

10. Optionally, select that you want the FreeCAD to be deinstalled
if the computer leaves the scope of the policy.

Group policy propagation typically takes some time - to reliably deploy the
package, all machines should be rebooted.

Installation on Linux using Crossover Office

You can install the windows version of FreeCAD on a Linux system using
CXOffice 5.0.1. Run msiexec from the CXOffice command line, assuming that
the install package is placed in the "software" directory which is mapped to
the drive letter "Y:":

msiexec /i Y:\\software\\FreeCAD<version>.msi

FreeCAD is running, but it has been reported that the OpenGL display does
not work, like with other programs running under Wine
(http://en.wikipedia.org/wiki/Wine_(software)) i.e. Google SketchUp
(http://en.wikipedia.org/wiki/SketchUp).

Index

(/wiki/index.php?title=Online_Help_Toc)

Install on Unix/Linux
The installation of FreeCAD on the most well-known linux systems has been
now endorsed by the community, and FreeCAD should be directly available
via the package manager available on your distribution. The FreeCAD team
also provides a couple of "official" packages when new releases are made,
and a couple of experimental PPA repositories for testing bleeding-edge
features.

Once you've got FreeCAD installed, it's time to get started (/wiki/index.php?
title=Getting_started)!

Ubuntu and Ubuntu-based systems
Many Linux distributions are based on Ubuntu and share its repositories.
Besides official variants (Kubuntu, Lubuntu and Xubuntu), there are non
official distros such as Linux Mint, Voyager and others. The installation
options below should be compatible to these systems.

Official Ubuntu repository

FreeCAD is available from Ubuntu repositories and can be installed via the
Software Center or with this command in a terminal:

Page 10 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

sudo apt-get install freecad

But chances are this version will be outdated, and not have the latest
features.

Latest Stable Release from the "stable releases" PPA or "daily" PPA

The FreeCAD community provides a PPA repository on Launchpad
(https://launchpad.net/~freecad-maintainers/+archive/freecad-stable) with
the latest "stable" FreeCAD version. There is also a more up to date "daily"
PPA repository on Launchpad (https://launchpad.net/~freecad-
maintainers/+archive/freecad-daily) automatically compiled daily from the
official FreeCAD repository master branch, which will usually contain
numerous bug fixes and feature updates.
Installing from the GUI

Add to your system's Software Sources the following PPA (read What are
PPAs and how do I use them? (http://askubuntu.com/questions/4983/what-
are-ppas-and-how-do-i-use-them/5102#5102%29) if you don't know how):

For the "stable" PPA

ppa:freecad-maintainers/freecad-stable

Or for the "daily" PPA

ppa:freecad-maintainers/freecad-daily

When a dialog window asks you to refresh your software sources, click OK.

Now you can install FreeCAD and FreeCAD documentation through the
Ubuntu Software Center, or your package manager of choice.
Installing from the console

Type (or copy-paste) these commands in a console to add the PPA and
install FreeCAD along with the documentation:

For the "stable" PPA

sudo add-apt-repository ppa:freecad-maintainers/freecad-stable

Or for the "daily" PPA

sudo add-apt-repository ppa:freecad-maintainers/freecad-daily

Then:

sudo apt-get update

sudo apt-get upgrade

sudo apt-get install freecad freecad-doc

Unstable version of FreeCAD

If you want to be on the bleeding edge of FreeCAD development, then use
the "daily" PPA repository which provides daily builds
(http://www.freecadweb.org/wiki/index.php?
title=Download#Ubuntu_PPA_packages).

Debian and other debian-based systems
Since Debian Lenny, FreeCAD is available directly from the Debian software
repositories and can be installed via synaptic or simply with:

sudo apt-get install freecad

OpenSUSE
FreeCAD is typically installed with:

Page 11 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Install on Windows (/wiki/index.php?
title=Install_on_Windows)

next: Install on Mac > (/wiki/index.php?title=Install_on_Mac)

zypper install FreeCAD

Gentoo
FreeCAD can be built/installed simply by issuing:

emerge freecad

Other
If you find out that your system features FreeCAD but is not documented in
this page, please tell us on the forum
(http://forum.freecadweb.org/viewforum.php?f=21)!

Many alternative, non-official FreeCAD packages are available on the net, for
example for systems like slackware or fedora. A search on the net can
quickly give you some results.

Manual install on .deb based systems

If for some reason you cannot use one of the above methods, you can
always download one of the .deb packages available on the Download
(/wiki/index.php?title=Download) page.

 (/wiki/index.php?title=File:Linux.png) Ubuntu
(https://launchpad.net/~freecad-maintainers/+archive/freecad-stable)
32/64bit

Once you downloaded the .deb corresponding to your system version, if you
have the Gdebi (http://en.wikipedia.org/wiki/Gdebi) package installed
(usually it is), you just need to navigate to where you downloaded the file,
and double-click on it. The necessary dependencies will be taken care of
automatically by your system package manager. Alternatively you can also
install it from the terminal, navigating to where you downloaded the file,
and type:

sudo dpkg -i Name_of_your_FreeCAD_package.deb

changing Name_of_your_FreeCAD_package.deb by the name of the file you
downloaded.

After you installed FreeCAD, a startup icon will be added in the "Graphic"
section of your Start Menu.

Installing on other Linux/Unix systems

Unfortnately, at the moment, no precompiled package is available for other
Linux/Unix systems,so you will need to compile FreeCAD yourself
(/wiki/index.php?title=CompileOnUnix).

Installing Windows Version on Linux

See the Install on Windows (/wiki/index.php?title=Install_on_Windows)
page.

Index
(/wiki/index.php?title=Online_Help_Toc)

Install on Mac
FreeCAD can be installed on Mac OS X in one step using the Installer.

 (/wiki/index.php?title=File:Mac.png) Mac OS X
(https://github.com/FreeCAD/FreeCAD/releases/download/0.16/FreeCAD_0.16-
6705.acfe417-OSX-x86_64.dmg) 10.9 Mavericks 64-bit

Page 12 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

New Mac download link

This page describes the usage and features of the FreeCAD installer. It also
includes uninstallation instructions. Once installed, you can get started
(/wiki/index.php?title=Getting_started)!

Simple Installation

The FreeCAD installer is provided as a Installer package (.mpkg) enclosed in
a disk image file.

You can download the latest installer from the Download (/wiki/index.php?
title=Download) page. After downloading the file, just mount the disk image,
then run the Install FreeCAD package.

(/wiki/index.php?title=File:Mac_installer_1.png)

The installer will present you with a Customize Installation screen that lists
the packages that will be installed. If you know that you already have any of
these packages, you can deselect them using the checkboxes. If you're not
sure, just leave all items checked.

(/wiki/index.php?title=File:Mac_installer_2.png)

Uninstallation

Page 13 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Install on Unix (/wiki/index.php?title=Install_on_Unix)
next: Getting started > (/wiki/index.php?title=Getting_started)

There currently isn't an uninstaller for FreeCAD. To completely remove
FreeCAD and all installed components, drag the following files and folders
to the Trash:

◾ In /Applications:
◾ FreeCAD

◾ in /Library/Frameworks/
◾ SoQt.framework
◾ Inventor.framework

Then, from the terminal, run:

sudo /Developer/Tools/uninstall-qt.py

sudo rm -R /usr/local/lib/OCC

sudo rm -R /usr/local/include/OCC

That's it. Eventually, FreeCAD will be available as a self-contained
application bundle so all this hassle will go away.

Index (/wiki/index.php?title=Online_Help_Toc)

Discovering FreeCAD

What's new

◾ Version 0.11 Release notes (/wiki/index.php?title=Release_notes_011) :
Check what's new in the 0.11 release of FreeCAD

◾ Version 0.12 Release notes (/wiki/index.php?title=Release_notes_012) :
Check what's new in the 0.12 release of FreeCAD

◾ Version 0.13 Release notes (/wiki/index.php?title=Release_notes_013) :
Check what's new in the 0.13 release of FreeCAD

◾ Version 0.14 Release notes (/wiki/index.php?title=Release_notes_014) :
Check what's new in the 0.14 release of FreeCAD

◾ Version 0.15 Release notes (/wiki/index.php?title=Release_notes_015) :
Check what's new in the 0.15 release of FreeCAD

◾ Version 0.16 Release notes (/wiki/index.php?title=Release_notes_016) :
Check what's new in the 0.16 release of FreeCAD

Foreword
FreeCAD is a 3D CAD/CAE parametric modeling application (/wiki/index.php?
title=About_FreeCAD). It is primarily made for mechanical design, but also
serves all other uses where you need to model 3D objects with precision
and control over modeling history.

FreeCAD is still in the early stages of development, so, although it already
offers you a large (and growing) list of features (/wiki/index.php?
title=Feature_list), much is still missing, specially comparing it to
commercial solutions, and you might not find it developed enough yet for
use in production environment. Still, there is a fast-growing community
(http://forum.freecadweb.org/index.php) of enthusiastic users, and you can
already find many examples (http://forum.freecadweb.org/viewtopic.php?
f=8&t=1222) of quality projects developed with FreeCAD.

Like all open-source projects, the FreeCAD project is not a one-way work
delivered to you by its developers. It depends much on its community to
grow, gain features, and stabilize (get bugs fixed). So don't forget this when
starting to use FreeCAD, if you like it, you can directly influence and help
(/wiki/index.php?title=Help_FreeCAD) the project!

Page 14 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Installing
First of all (if not done already) download and install FreeCAD. See the
Download (/wiki/index.php?title=Download) page for information about
current versions and updates, and the Installing (/wiki/index.php?
title=Installing) page for information about how to install FreeCAD. There are
install packages ready for Windows (.msi), Ubuntu & Debian (.deb)
openSUSE (.rpm) and Mac OSX. As FreeCAD is open-source, if you are
adventurous, but want to have a look at the brand-new features being
developed right now, you can also grab the source code and compile
(/wiki/index.php?title=Compiling) FreeCAD yourself.

Exploring FreeCAD

(/wiki/index.php?title=File:Freecad-interface.jpg)

1. The 3D view, showing the contents of your document
2. The tree view, which shows the hierarchy and construction

history of all the objects in your document
3. The properties editor (/wiki/index.php?title=Property), which

allows you to view and modify properties of the selected
object(s)

4. The report view (or output window), which is where FreeCAD
prints messages, warnings and errors

5. The python console, where all the commands executed by
FreeCAD are printed, and where you can enter python code

6. The workbench selector (/wiki/index.php?title=Workbenches),
where you select the active workbench

The main concept behind the FreeCAD interface is that it is separated into
workbenches (/wiki/index.php?title=Workbenches). A workbench is a
collection of tools suited for a specific task, such as working with meshes
(/wiki/index.php?title=Mesh_Module), or drawing 2D objects
(/wiki/index.php?title=Draft_Module), or constrained sketches
(/wiki/index.php?title=Sketcher_Module). You can switch the current
workbench with the workbench selector (6). You can customize
(/wiki/index.php?title=Interface_Customization) the tools included in each
workbench, add tools from other workbenches or even self-created tools,
that we call macros (/wiki/index.php?title=Macros). There is also a generic
workbench which gathers the most commonly used tools from other
workbenches, called the complete workbench.

When you start FreeCAD for the first time, you are presented with the start

Page 15 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

center:

(/wiki/index.php?title=File:Startcenter.jpg)

The Start Center allows you to quickly jump to one of the most common
workbenches, open one of the recent files, or see the latest news from the
FreeCAD world. You can change the default workbench in the preferences
(/wiki/index.php?title=Preferences_Editor).

Navigating in the 3D space
FreeCAD has several different navigation modes (/wiki/index.php?
title=Mouse_Model) available, that change the way you use your mouse to
interact with the objects in the 3D view and the view itself. One of them is
specifically made for touchpads (/wiki/index.php?
title=Mouse_Model#Touchpad_Navigation), where the middle mouse button
is not used. The following table describes the default mode, called CAD
Navigation (You can quickly change the current navigation mode by right-
clicking on an empty area of the 3D view):

Select Pan Zoom

 (/wiki/index.php?
title=File:Hand_cursor.png)

 (/wiki/index.php?
title=File:Pan_cursor.png)

 (/wiki/index.php?
title=File:Zoom_cursor.png)

 (/wiki/index.php?

title=File:Select-
mouse.svg)

 (/wiki/index.php?

title=File:Pan-mouse.svg) title=File:Zoom-mouse.svg)

Page 16 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Press the left mouse
button over an object you
want to select. Holding
down ctrl allows the
selection of multiple
objects.

Click the middle mouse button and
move the object around to pan

Use the mouse wheel to zoom in
and out. Clicking the middle
mouse button re-centers the view
to the location of the cursor.

 (/wiki/index.php?

title=File:Mouse_2_button_right.svg)title=File:Mouse_2_button_left.svg)
Press and hold Ctrl key and click
and release right mouse button to
pan (rev 0.14)

Once in Pan mode, press and
release left mouse button to
Zoom, to exit back to pan mode
press and release right mouse
button (rev 0.14)

You also have several view presets (top view, front view, etc) available in the
View menu and on the View toolbar, and by numeric shortcuts (1 , 2 , etc...),
and by right-clicking on an object or on an empty area of the 3D view, you
have quick access to some common operations, such as setting a particular
view, or locating an object in the Tree view.

First steps with FreeCAD
FreeCAD's focus is to allow you to make high-precision 3D models, to keep
tight control over those models (being able to go back into modelling
history and change parameters), and eventually to build those models (via
3D printing, CNC machining or even construction worksite). It is therefore
very different from some other 3D applications made for other purposes,
such as animation film or gaming. Its learning curve can be steep, specially
if this is your first contact with 3D modeling. If you are struck at some point,
don't forget that the friendly community of users on the FreeCAD forum
(http://forum.freecadweb.org/index.php) might be able to get you out in no
time.

The workbench you will start using in FreeCAD depends on the type of job
you need to do: If you are going to work on mechanical models, or more
generally any small-scale objects, you'll probably want to try the PartDesign
Workbench (/wiki/index.php?title=PartDesign_Workbench). If you will work
in 2D, then switch to the Draft Workbench (/wiki/index.php?
title=Draft_Workbench), or the Sketcher Workbench (/wiki/index.php?
title=Sketcher_Workbench) if you need constraints. If you want to do BIM,
launch the Arch Workbench (/wiki/index.php?title=Arch_Workbench). If you

Page 17 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

are working with ship design, there is a special Ship Workbench
(/wiki/index.php?title=Ship_Workbench) for you. And if you come from the
OpenSCAD world, try the OpenSCAD Workbench (/wiki/index.php?
title=OpenSCAD_Workbench).

You can switch workbenches at any time, and also customize
(/wiki/index.php?title=Interface_Customization) your favorite workbench to
add tools from other workbenches.

Working with the PartDesign and Sketcher workbenches
The PartDesign Workbench (/wiki/index.php?title=PartDesign_Workbench) is
specially made to build complex objects, starting from simple shapes, and
adding or removing pieces (that we call "features"), until you get to your
final object. All the features you applied during the modelling process are
stored in a separate view called the tree view (/wiki/index.php?
title=Document_structure), which also contains the other objects in your
document. You can think of a PartDesign object as a succession of
operations, each one applied to the result of the preceding one, forming
one big chain. In the tree view, you see your final object, but you can expand
it and retrieve all preceding states, and change any of their parameter,
which automatically updates the final object.

The PartDesign workbench makes heavy use of another workbench, the
Sketcher Workbench (/wiki/index.php?title=Sketcher_Workbench). The
sketcher allows you to draw 2D shapes, which are defined by applying
Constraints to the 2D shape. For example, you might draw a rectangle and
set the size of a side by applying a length constraint to one of the sides.
That side then cannot be resized anymore (unless the constraint is
changed).

Those 2D shapes made with the sketcher are used a lot in the PartDesign
workbench, for example to create 3D volumes, or to draw areas on the faces
of your object that will then be hollowed from its main volume. This is a
typical PartDesign workflow:

1. Create a new sketch
2. Draw a closed shape (make sure all points are joined)
3. Close the sketch
4. Expand the sketch into a 3D solid by using the pad tool
5. Select one face of the solid
6. Create a second sketch (this time it will be drawn on the

selected face)
7. Draw a closed shape
8. Close the sketch
9. Create a pocket from the second sketch, on the first object

Which gives you an object like this:

Page 18 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

(/wiki/index.php?title=File:Partdesign_example.jpg)
At any moment, you can select the original sketches and modify them, or
change the extrusion parameters of the pad or pocket operations, which will
update the final object.

Working with the Draft and Arch workbenches
The Draft Workbench (/wiki/index.php?title=Draft_Workbench) and Arch
Workbench (/wiki/index.php?title=Arch_Module) behave a bit differently
than the other workbenches above, although they follow the same rules,
which are common to all of FreeCAD. In short, while the Sketcher and
PartDesign are made primarily to design single pieces, Draft and Arch are
made to ease your work when working with several, simpler objects.

The Draft Workbench (/wiki/index.php?title=Draft_Workbench) offers you 2D
tools a bit similar to what you can find in traditional 2D CAD applications
such as AutoCAD (https://en.wikipedia.org/wiki/AutoCAD). However, 2D
drafting being far away from the scope of FreeCAD, don't expect to find
there the full array of tools that these dedicated applications offer. Most of
the Draft tools work not only in a 2D plane but also in the full 3D space, and
benefit from special helper systems such as Work planes (/wiki/index.php?
title=Draft_SelectPlane) and object snapping (/wiki/index.php?
title=Draft_Snap).

The Arch Workbench (/wiki/index.php?title=Arch_Module) adds BIM
(http://en.wikipedia.org/wiki/Building_Information_Modeling) tools to
FreeCAD, allowing you to build architectural models with parametric objects.
The Arch workbench relies much on other modules such as Draft and
Sketcher. All the Draft tools are also present in the Arch workbench, and
most Arch tools make use of the Draft helper systems.

A typical workflow with Arch and Draft workbenches might be:

1. Draw a couple of lines with the Draft Line tool
2. Select each line and press the Wall tool to build a wall on each

of them
3. Join the walls by selecting them and pressing the Arch Add

tool
4. Create a floor object, and move your walls in it from the Tree

view
5. Create a building object, and move your floor in it from the

Tree view
6. Create a window by clicking the Window tool, select a preset in

its panel, then click on a face of a wall
7. Add dimensions by first setting the working plane if necessary,

then using the Draft Dimension tool
Which will give you this:

Page 19 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Install on Mac (/wiki/index.php?title=Install_on_Mac)
next: Mouse Model > (/wiki/index.php?title=Mouse_Model)

(/wiki/index.php?title=File:Arch_workflow_example.jpg)

More on the Tutorials (/wiki/index.php?title=Tutorials) page.

Scripting
And finally, one of the most powerful features of FreeCAD is the scripting
(/wiki/index.php?title=Scripting) environment. From the integrated python
console (or from any other external Python script), you can gain access to
almost any part of FreeCAD, create or modify geometry, modify the
representation of those objects in the 3D scene or access and modify the
FreeCAD interface. Python scripting can also be used in macros
(/wiki/index.php?title=Macros), which provide an easy method to create
custom commands.

Index
(/wiki/index.php?title=Online_Help_Toc)

Working with FreeCAD
3D navigation
The FreeCAD mouse model consists of the commands used to visually
navigate the 3D space and interact with the objects displayed. FreeCAD
supports multiple mouse model navigation styles. The default navigation
style is referred to as "CAD Navigation," and is very simple and practical, but
FreeCAD also provides alternative navigation styles, that you can choose
according to your preferences.

Navigation
The object handling is common to all workbenches. The following mouse
gestures can be used to control the object position and view according to
which Navigation style is selected.

There are two ways to change the navigation style:

◾ In the Preferences Editor (/wiki/index.php?title=Preferences_Editor),
Display section, 3D View tab;

◾ By right-clicking in empty space in the 3D view area, then selecting
Navigation style in the contextual menu.

CAD Navigation (default)

Page 20 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

This is the default navigation style and allows the user a simple control of
the view, and does not require the use of keyboard keys except to make
multi-selections.

Select Pan Zoom

 (/wiki/index.php?
title=File:Hand_cursor.png)

 (/wiki/index.php?
title=File:Pan_cursor.png)

 (/wiki/index.php?
title=File:Zoom_cursor.png)

 (/wiki/index.php?

title=File:Select-
mouse.svg)

 (/wiki/index.php?

title=File:Pan-mouse.svg) title=File:Zoom-mouse.svg)

Press the left mouse
button over an object you
want to select. Holding
down ctrl allows the
selection of multiple
objects.

Click the middle mouse button and
move the object around to pan

Use the mouse wheel to zoom in
and out. Clicking the middle
mouse button re-centers the view
to the location of the cursor.

 (/wiki/index.php?

title=File:Mouse_2_button_right.svg)title=File:Mouse_2_button_left.svg)
Press and hold Ctrl key and click
and release right mouse button to
pan (rev 0.14)

Once in Pan mode, press and
release left mouse button to
Zoom, to exit back to pan mode
press and release right mouse
button (rev 0.14)

Inventor Navigation

In Inventor Navigation, modeled after Open Inventor
(http://en.wikipedia.org/wiki/Open_Inventor) (not to be confused with
Autodesk Inventor), there is no mouse-only selection. In order to select
objects, you must hold down the CTRL key.

Select Pan Zoom
 (/wiki/index.php?

title=File:Hand_cursor.png)
 (/wiki/index.php?

title=File:Pan_cursor.png)
 (/wiki/index.php?

title=File:Zoom_cursor.png)

Page 21 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

ctrl +

(/wiki/index.php?
title=File:Select-

mouse.svg)

 (/wiki/index.php?

title=File:Pan-mouse.svg)

 (/wiki/index.php?

title=File:Zoom-mouse.svg)

or
1

2

(/wiki/index.php?
title=File:Rotate-

mouse.svg)
Hold ctrl and press the left
mouse button over an
object you want to select.

Click the left mouse
button and move the
object around.

Use the mouse wheel to
zoom in and out, or click
and hold the middle
mouse button and click
the left mouse button.

Blender Navigation

In Blender Navigation, modeled after Blender (http://www.blender.org),
there is no mouse-only panning. In order to pan the view, you must hold
down the SHIFT key.

Select Pan Zoom
 (/wiki/index.php?

title=File:Hand_cursor.png)
 (/wiki/index.php?

title=File:Pan_cursor.png)
 (/wiki/index.php?

title=File:Zoom_cursor.png)

 (/wiki/index.php?

title=File:Select-
mouse.svg)

shift +

(/wiki/index.php?
title=File:Pan-mouse.svg)

 (/wiki/index.php?

title=File:Zoom-mouse.svg)

Press the left mouse
button over an object you
want to select.

Hold shift and click the
middle mouse button
and move the object
around.

Use the mouse wheel to
zoom in and out.

Touchpad Navigation

In Touchpad Navigation, neither panning, nor zooming, nor rotating the
view, are mouse-only (or touchpad-only) operations.

Select Pan Zoom
 (/wiki/index.php?

title=File:Hand_cursor.png)
 (/wiki/index.php?

title=File:Pan_cursor.png)
 (/wiki/index.php?

title=File:Zoom_cursor.png)

 (/wiki/index.php?

title=File:Select-
touchpad.png)

shift +

(/wiki/index.php?
title=File:Touchpad.png)

PgUp / PgDn

Press the left mouse
button over an object you
want to select.

Hold shift and move the
object around.

Use PgUp and PgDn to
zoom in and out.

or

Page 22 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

shift + ctrl +

(/wiki/index.php?
title=File:Select-
touchpad.png)

Hold down both the shift
and the ctrl keys, press the
left mouse button, and
move the pointer.

Gesture Navigation (v0.16)

This navigation style was tailored for usability with touchscreen and pen,
but is very usable with mouse too.

Select Pan Zoom
 (/wiki/index.php?

title=File:Hand_cursor.png)
 (/wiki/index.php?

title=File:Pan_cursor.png)
 (/wiki/index.php?

title=File:Zoom_cursor.png)

 (/wiki/index.php?

title=File:Select-
mouse.svg)

 (/wiki/index.php?

title=File:Pan-mouse-
Ctrl.svg)

 (/wiki/index.php?

title=File:Zoom-mouse.svg)

Press the left mouse
button over an object you
want to select. Holding
down Ctrl allows the
selection of multiple
objects.

Hold right mouse button
and drag to pan the view.

Use the mouse wheel to
zoom in and out. The zoom
is centered at the cursor
location.

(/wiki/index.php?
title=File:Touch_Tap.svg)

(/wiki/index.php?
title=File:Touch_Tap-

Hold-Drag.svg)
or

(/wiki/index.php?
title=File:Touch_Two-Finger-
Drag.svg)

(/wiki/index.php?
title=File:Touch_Pinch.svg)

Page 23 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Tap to select. Drag with two fingers to
pan the view.
Alternatively, tap and
hold, then drag
(simulates pan with right
mouse button).

Pinch to zoom (i.e., drag
two fingers to each
other/apart).

Notes on Gesture Navigation style:

◾ on Windows, the actions of two-finger gestures are separated. The
action depends on how one starts the gesture. For example, if one
starts two-finger pan, the gesture will only pan. Changing the distance
between fingers afterwards will not affect the scaling.

Maya-Gesture Navigation

In Maya-Gesture Navigation, all view movements are archived pressing ALT
and a mouse button, so that it will be needed to have a 3 button mouse in
order to correctly use this navigation mode. Alternately it's possible to use
gestures as this mode was been developed over the normal Gesture
Navigation mode.

Select Pan Zoom
 (/wiki/index.php?

title=File:Hand_cursor.png)
 (/wiki/index.php?

title=File:Pan_cursor.png)
 (/wiki/index.php?

title=File:Zoom_cursor.png)

 (/wiki/index.php?

title=File:Select-
mouse.svg)

alt +

(/wiki/index.php?
title=File:Pan-mouse.svg)

alt +

(/wiki/index.php?
title=File:Pan-mouse-

Ctrl.svg) or

(/wiki/index.php?
title=File:Zoom-mouse.svg)

Press the left mouse
button over an object you
want to select.

Hold alt, hold the middle
mouse button and drag
to pan the view.

Hold alt, hold the right
mouse button and drag to
zoom in and out or use the
mouse wheel to get the
same effect.

Selecting objects

Simple selection

Objects can be selected by a click with the left mouse button either by
clicking on the object in the 3D-view or by selecting it in the tree view.

Preselection

There is also a Preselection mechanism that highlights objects and displays
information before selection by just hovering the mouse over the objects. If
you don't like this behaviour or you have a slow machine, you can switch
preselection off in the preferences.

Page 24 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Getting started (/wiki/index.php?title=Getting_started)
next: Document structure > (/wiki/index.php?
title=Document_structure)

Manipulating Objects
FreeCAD offers manipulators (/wiki/index.php?title=Manipulator) that are
handles that can be used to modify an object's appearance, shape, or other
parameters.

.

Obsolete
The clipping plane (/wiki/index.php?title=Std_ClippingPlane) is a good
example of an object with manipulators. A clipping plane (/wiki/index.php?
title=Std_ClippingPlane) can be activated with the View→Clipping Plane
menu. After activation the clipping plane object appears and shows seven
obvious manipulators as little boxes: One on each end of its three
coordinate axes and one on the center of the plane normal axis. There are
four more that are not as obvious: The plane itself and the thin part of the
three axis objects.

Scaling
To scale the object click with the left mouse button on the box
manipulators at the end of the axes and pull them back and forth.
Depending on the object the manipulators work independently or
synchronously.
Out of plane shifting
To shift the object along its normal vector, pull the long box on
the center of an axis with the left mouse button. For the clipping
plane there is only one manipulator along the normal vector.
In plane shifting
To move the center of the clipping plane, click on the plane object
and pull it to the desired location.
Rotation
Clicking on the thin part of the axes puts the manipulator in
rotation mode.

Hardware support
FreeCAD also supports some 3D input devices (/wiki/index.php?
title=3D_input_devices).

Mac OS X Issues
Recently we got reports on the forum
(http://forum.freecadweb.org/viewtopic.php?f=3&t=3592&start=0) from Mac
users that those mouse button and key combination do not work as
expected. Unfortunately, none of the developers owns a Mac, neither do the
other regular contributors. We need your help to determine which mouse
buttons and key combination work so we can update this wiki.

Index (/wiki/index.php?title=Online_Help_Toc)

The FreeCAD Document

Page 25 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

A FreeCAD document contains all the objects of your scene. It can contain
groups, and objects made with any workbench. You can therefore switch
between workbenches, and still work on the same document. The document
is what gets saved to disk when you save your work. You can also open
several documents at the same time in FreeCAD, and open several views of
the same document.

Inside the document, the objects can be moved into groups, and have a
unique name. Managing groups, objects and object names is done mainly
from the Tree view. It can also be done, of course, like everything in
FreeCAD, from the python interpreter. In the Tree view, you can create
groups, move objects to groups, delete objects or groups, by right-clicking
in the tree view or on an object, rename objects by double-clicking on their
names, or possibly other operations, depending on the current workbench.

The objects inside a FreeCAD document can be of different types. Each
workbench can create its own types of objects, for example the Mesh
Workbench (/wiki/index.php?title=Mesh_Workbench) creates mesh objects,
the Part Workbench (/wiki/index.php?title=Part_Workbench) create Part
objects, the Draft Workbench (/wiki/index.php?title=Draft_Workbench) also
creates Part objects, etc.

If there is at least one document open in FreeCAD, there is always one and
only one active document. That's the document that appears in the current
3D view, the document you are currently working on.

Application and User Interface
Like almost everything else in FreeCAD, the user interface part (Gui) is
separated from the base application part (App). This is also valid for
documents. The documents are also made of two parts: the Application
document, which contains our objects, and the View document, which
contains the representation on screen of our objects.

Think of it as two spaces, where the objects are defined. Their constructive
parameters (is it a cube? a cone? which size?) are stored in the Application
document, while their graphical representation (is it drawn with black lines?
with blue faces?) are stored in the View document. Why is that? Because
FreeCAD can also be used WITHOUT graphical interface, for example inside
other programs, and we must still be able to manipulate our objects, even if
nothing is drawn on the screen.

Another thing that is contained inside the View document are 3D views. One
document can have several views opened, so you can inspect your
document from several points of view at the same time. Maybe you would
want to see a top view and a front view of your work at the same time?
Then, you will have two views of the same document, both stored in the
View document. Creating new views or closing views can be done from the
View menu or by right-clicking on a view tab.

Scripting
Documents can be easily created, accessed and modified from the python
interpreter. For example:

 (/wiki/index.php?

title=File:Screenshot_treeview.jpg)

Page 26 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Mouse Model (/wiki/index.php?title=Mouse_Model)
next: Preferences Editor > (/wiki/index.php?
title=Preferences_Editor)

FreeCAD.ActiveDocument

Will return the current (active) document

FreeCAD.ActiveDocument.Blob

Would access an object called "Blob" inside your document

FreeCADGui.ActiveDocument

Will return the view document associated to the current document

FreeCADGui.ActiveDocument.Blob

Would access the graphical representation (view) part of our Blob object

FreeCADGui.ActiveDocument.ActiveView

Will return the current view

Index (/wiki/index.php?title=Online_Help_Toc)

Setting User Preferences
The preferences system of FreeCAD is located in the Edit menu ->
Preferences.

FreeCAD functionality is divided into different modules, each module being
responsible for the working of a specific workbench (/wiki/index.php?
title=Workbenches). FreeCAD also uses a concept called late loading, which
means that components are loaded only when they are needed. You may
have noticed that when you select a workbench on the FreeCAD toolbar, that
workbench and all its components get loaded at that moment. This includes
its preferences settings.

 (/wiki/index.php?

title=File:Screenshot_preferences01.jpg)

The general preferences settings

When you start FreeCAD with no workbench loaded, you will then have a
minimal preferences window. As you load additional modules, new sections
will appear in the preferences window, allowing you to configure the details
of each workbench.

Page 27 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Document structure (/wiki/index.php?
title=Document_structure)
next: Interface Customization > (/wiki/index.php?
title=Interface_Customization)

Without any module loaded, you will have access to two configuration
sections, responsible for the general application settings and for the display
settings.

 (/wiki/index.php?

title=File:Screenshot_preferences02.jpg)

The display settings

FreeCAD is always in constant evolution, so the contents of those screens
might differ from the above screenshots. The settings are usually self-
explanatory, so you shouldn't have any difficulty configuring FreeCAD to
your needs.

The Draft module has its preferences (/wiki/index.php?
title=Draft_Preferences) screen

Index (/wiki/index.php?title=Online_Help_Toc)

Customizing the Interface
Since FreeCAD interface is based on the modern Qt
(http://en.wikipedia.org/wiki/Qt_(toolkit)) toolkit, it has a state-of-the-art
organization. Widgets, menus, toolbars and other tools can be modified,
moved, shared between workbenches, keyboard shortcuts can be set,
modified, and macros can be recorded and played. The customization
window is accessed from the Tools -> Customize menu:

Page 28 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Preferences Editor (/wiki/index.php?
title=Preferences_Editor)

next: Property editor > (/wiki/index.php?title=Property_editor)

(/wiki/index.php?title=File:Screenshot-customize.jpg)

The Commands tab lets you browse all available FreeCAD commands,
organized by their category.

In Keyboard, you can see the keyboard shortcuts associated with every
FreeCAD command, and if you want, modify or assign new shortcut to any
command. This is where to come if you use a particular workbench often,
and would like to speed up its use by using the keyboard.

The Toolbars and Toolbox bars tabs let you modify existing toolbars, or
create your own custom toolbars.

The Macros tab lets you manage your saved Macros (/wiki/index.php?
title=Macros).

Create your ToolBars for your macro Customize ToolsBar (/wiki/index.php?
title=Customize_ToolsBar)

In 0.16 version is available a new tool that lets you manage your
workbenches

(/wiki/index.php?title=File:CustomizeWorkbenches.png)

Index (/wiki/index.php?title=Online_Help_Toc)

Page 29 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Interface Customization (/wiki/index.php?
title=Interface_Customization)

next: Workbenches > (/wiki/index.php?title=Workbenches)

Object properties
A property is a piece of information like a number or a text string that is
attached to a FreeCAD document or an object in a document. Properties can
be viewed and - if allowed - modified with the Property editor
(/wiki/index.php?title=Property_editor).

Properties play a very important part in FreeCAD, since it is from the
beginning made to work with parametric objects, which are objects defined
only by their properties.

Custom scripted objects (/wiki/index.php?title=Scripted_objects) in FreeCAD
can have properties of the following types:

Boolean

Float

FloatList

FloatConstraint

Angle

Distance

Integer

IntegerConstraint

Percent

Enumeration

IntegerList

String

StringList

Link

LinkList

Matrix

Vector

VectorList

Placement

PlacementLink

Color

ColorList

Material

Path

File

FileIncluded

PartShape

FilletContour

Circle

Index
(/wiki/index.php?title=Online_Help_Toc)

Working with workbenches
FreeCAD, like many modern design applications such as Revit
(http://en.wikipedia.org/wiki/Revit) or CATIA
(http://en.wikipedia.org/wiki/CATIA), is based on the concept of Workbench
(http://en.wikipedia.org/wiki/Workbench). A workbench can be considered
as a set of tools specially grouped for a certain task. In a traditional
furniture workshop, you would have a work table for the person who works
with wood, another one for the one who works with metal pieces, and
maybe a third one for the guy who mounts all the pieces together.

In FreeCAD, the same concept applies. Tools are grouped into workbenches
according to the tasks they are related to.

The following workbenches are available:

◾ (/wiki/index.php?title=File:Workbench_Arch.png) The Arch Module
(/wiki/index.php?title=Arch_Module) for working with architectural
elements.

◾ (/wiki/index.php?title=File:Workbench_Assembly.png) The Assembly
Module (/wiki/index.php?title=Assembly_project) for working with

Page 30 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

multiple shapes, multiple documents, multiple files, multiple
relationships...

◾ (/wiki/index.php?title=File:Workbench_Complete.png) The Complete
Workbench (/wiki/index.php?title=Complete_Workbench) hold all
commands and features from all the modules and workbenches which
met certain quality criteria.

◾ (/wiki/index.php?title=File:Workbench_Draft.png) The Draft
Workbench (/wiki/index.php?title=Draft_Module) contains 2D tools and
basic 2D and 3D CAD operations.

◾ (/wiki/index.php?title=File:Workbench_Drawing.png) The Drawing
workbench (/wiki/index.php?title=Drawing_Module) for displaying your
3D work on a 2D sheet.

◾ (/wiki/index.php?title=File:Workbench_FEM.png) The FEM Module
(/wiki/index.php?title=FEM_Module) provides Finite Element Analysis
(FEA) workflow.

◾ (/wiki/index.php?title=File:Workbench_Image.png) The Image Module
(/wiki/index.php?title=Image_Module) for working with bitmap images.

◾ (/wiki/index.php?title=File:Workbench_Inspection.png) The
Inspection Module (/wiki/index.php?title=Inspection_Workbench) is
made to give you specific tools for examination of shapes. It is still in
development.

◾ (/wiki/index.php?title=File:Workbench_Mesh.png) The Mesh Module
(/wiki/index.php?title=Mesh_Module) for working with triangulated
meshes.

◾ (/wiki/index.php?title=File:Workbench_OpenSCAD.png) The
OpenSCAD Module (/wiki/index.php?title=OpenSCAD_Module) for
interoperability with OpenSCAD and repairing CSG model history.

◾ (/wiki/index.php?title=File:Workbench_Part.png) The Part Module
(/wiki/index.php?title=Part_Module) for working with CAD parts.

◾ (/wiki/index.php?title=File:Workbench_PartDesign.png) The Part
Design Workbench (/wiki/index.php?title=PartDesign_Workbench) for
building Part shapes from sketches.

◾ (/wiki/index.php?title=File:Workbench_Path.png) The Path
Workbench (/wiki/index.php?title=Path_Workbench) is used to produce
G-Code instructions. It is still in early stages of development. Only v 0.16

◾ (/wiki/index.php?title=File:Workbench_Plot.png) The Plot Workbench
(/wiki/index.php?title=Plot_Module) The Plot module allows to edit and
save output plots created from other modules and tools.

◾ (/wiki/index.php?title=File:Workbench_Points.png) The Points Module
(/wiki/index.php?title=Points_Module) for working with point clouds.

◾ (/wiki/index.php?title=File:Workbench_Raytracing.png) The
Raytracing Module (/wiki/index.php?title=Raytracing_Module) for
working with ray-tracing (rendering)

◾ (/wiki/index.php?title=File:Workbench_Reverse_Engineering.png) The
Reverse Engineering Module (/wiki/index.php?
title=Reverse_Engineering_Workbench) is intended to give you specific
tools to convert shapes/solids/meshes into parametric FreeCAD-
compatible features. It is still in development.

◾ (/wiki/index.php?title=File:Workbench_Robot.png) The Robot Module
(/wiki/index.php?title=Robot_Module) for studying robot movements.

Page 31 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Property editor (/wiki/index.php?
title=Property_editor)
next: PartDesign Workbench > (/wiki/index.php?
title=PartDesign_Workbench)

◾ (/wiki/index.php?title=File:Workbench_Ship.png) The Ship Workbench
(/wiki/index.php?title=Ship_Workbench) FreeCAD-Ship works over Ship
entities, that must be created on top of provided geometry.

◾ (/wiki/index.php?title=File:Workbench_Sketcher.png) The Sketcher
Module (/wiki/index.php?title=Sketcher_Module) for working with
geometry-constrained sketches.

◾ (/wiki/index.php?title=File:Workbench_Spreadsheet.png) The
Spreadsheet Workbench (/wiki/index.php?title=Spreadsheet_Module)
for creating and manipulating spreadsheet data.

◾ (/wiki/index.php?title=File:Workbench_Start.png) The Start Center
(/wiki/index.php?title=Start_Workbench) allows you to quickly jump to
one of the most common workbenches.

◾ (/wiki/index.php?title=File:Workbench_Test.png) The Test framework
(/wiki/index.php?title=Debugging) is for debugging FreeCAD.

◾ (/wiki/index.php?title=File:Workbench_Web.png) The Web Module
(/wiki/index.php?title=Web_Workbench) provides you with a browser
window instead of the 3D-View within FreeCAD.

New workbenches are in development, stay tuned!

When you switch from one workbench to another, the tools available on the
interface change. Toolbars, command bars and possibly other parts of the
interface switch to the new workbench, but the contents of your scene
doesn't change. You could, for example, start drawing 2D shapes with the
Draft Workbench, then work further on them with the Part Workbench.

Note that sometimes a Workbench is referred to as a Module. However,
Workbenches and Modules are different entities. A Module is any extension
of FreeCAD, while a Workbench is a special GUI configuration that groups
some toolbars and menus. Usually every Module contains its own
Workbench, hence the cross-use of the name.

Index (/wiki/index.php?title=Online_Help_Toc)

The PartDesign workbench
The Part Design Workbench provides tools for modelling complex solid
parts and is based on a Feature editing methodology to produce a single
contiguous solid. It is intricately linked with the Sketcher Workbench
(/wiki/index.php?title=Sketcher_Workbench).

What is a single contiguous solid? This is an item like a casting or
something machined from a single block of metal. If the item involves nails,
screws, glue or welding, it is not a single contiguous solid. As a practical
example, PartDesign would not be used to model a wooden chair, but would
be used to model the subcomponents (legs, slats, seat, etc). The
subcomponents are combined using the Assembly (/wiki/index.php?
title=Assembly_Workbench), Part (/wiki/index.php?title=Part_Workbench) or
Draft (/wiki/index.php?title=Draft_Workbench) workbench.

Page 32 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

(/wiki/index.php?title=File:Revolve3_cropped.png)

Basic Workflow
The sketch is the building block for creating and editing solid parts. The
workflow can be summarized by this: a sketch containing 2D geometry is
created first, then a solid creation tool is used on the sketch. At the moment
the available tools are:

◾ (/wiki/index.php?title=File:PartDesign_Pad.png) Pad which extrudes
a sketch

◾ (/wiki/index.php?title=File:PartDesign_Pocket.png) Pocket which
creates a pocket on an existing solid

◾ (/wiki/index.php?title=File:PartDesign_Revolution.png) Revolution
which creates a solid by revolving a sketch along an axis

◾ (/wiki/index.php?title=File:PartDesign_Groove.png) Groove which
creates a groove in an existing solid

More tools are planned in future releases.

A very important concept in the PartDesign Workbench is the sketch
support. Sketches can be created on standard planes (XY, XZ, YZ and planes
parallel to them) or on a planar face of an existing solid. For this last case,
the existing solid becomes the support of the sketch. Several tools will only
work with sketches that have a support, for example, Pocket - without a
support there would be nothing to remove material from!

After solid geometry has been created it can be modified with chamfers and
fillets or transformed, e.g. mirrored or patterned.

The PartDesign Workbench is meant to create a single, connected solid.
Multiple solids will be possible with the Assembly workbench
(/wiki/index.php?title=Assembly_Workbench).

As we create a model in the Part Design Workbench, each feature takes the
shape of the last one and adds or removes something, creating linear
dependencies from feature to feature as the model is created. Hence a "Cut"
feature is not only the cut hole itself, but the whole part with the cut. As a
new feature is added to the model, FreeCAD turns off visibility of the old
features. The user usually should only have the newest item (feature) in the
model tree visible, because otherwise the other phases of the model
overlay each other, and holes are filled in by the earlier model features that
didn't yet have those holes.

To toggle visibility of an object on or off, select it in the hierarchy tree and
press the Spacebar. Usually everything but the last item in the hierarchy
tree should be greyed out and therefore not visible in the 3D view.

The Tools
The Part Design tools are all located in the Part Design menu that appears

Page 33 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

when you load the Part Design module.

They include the Sketcher Workbench (/wiki/index.php?
title=Sketcher_Workbench) tools, since the Part Design module is so
dependent on them.

The Sketcher Tools
Sketcher Geometries

These are tools for creating objects.

◾ (/wiki/index.php?title=File:Sketcher_CreatePoint.png) Point
(/wiki/index.php?title=Sketcher_Point): Draws a point.

◾ (/wiki/index.php?title=File:Sketcher_Line.png) Line by 2 point
(/wiki/index.php?title=Sketcher_Line): Draws a line segment from 2
points.

◾ (/wiki/index.php?title=File:Sketcher_Arc.png) Arc (/wiki/index.php?
title=Sketcher_Arc): Draws an arc segment from center, radius, start
angle and end angle.

◾ 32px (/wiki/index.php?
title=Special:Upload&wpDestFile=Sketcher_Create3PointArc.png) Arc by
3 Point (/wiki/index.php?title=Sketcher_Arc3Point): Draws an arc
segment from two endpoints and another point on the circumference.

◾ (/wiki/index.php?title=File:Sketcher_Circle.png) Circle
(/wiki/index.php?title=Sketcher_Circle): Draws a circle from center and
radius.

◾ 32px (/wiki/index.php?
title=Special:Upload&wpDestFile=Sketcher_Create3PointCircle.png)
Circle by 3 Point (/wiki/index.php?title=Sketcher_Circle3Point) : Draws a
circle from three points on the circumference.

◾ (/wiki/index.php?title=File:Sketcher_Conics.png) Conic sections
(/wiki/index.php?title=Sketcher_Conic_Sections):
◾ (/wiki/index.php?title=File:Sketcher_CreateEllipse.png) Ellipse

by center (/wiki/index.php?title=Sketcher_Ellipse) : Draws an
ellipse by center point, major radius point and minor radius point.
(v0.15)

◾ (/wiki/index.php?title=File:Sketcher_CreateEllipse_3points.png)
Ellipse by 3 points (/wiki/index.php?
title=Sketcher_Ellipse_by_3_Points) : Draws an ellipse by major
diameter (2 points) and minor radius point. (v0.15)

◾ (/wiki/index.php?title=File:Sketcher_Elliptical_Arc.png) Arc of
ellipse (/wiki/index.php?title=Sketcher_Arc_of_Ellipse) : Draws an
arc of ellipse by center point, major radius point, starting point and
ending point. (v0.15)

◾ (/wiki/index.php?title=File:Sketcher_CreatePolyline.png) Polyline
(multiple-point line) (/wiki/index.php?title=Sketcher_Polyline): Draws a
line made of multiple line segments. Pressing the M key while drawing a
Polyline toggles between the different polyline modes.

◾ (/wiki/index.php?title=File:Sketcher_CreateRectangle.png)
Rectangle (/wiki/index.php?title=Sketcher_Rectangle): Draws a
rectangle from 2 opposite points.

◾ (/wiki/index.php?title=File:Sketcher_CreateTriangle.png) Triangle
(/wiki/index.php?title=Sketcher_Triangle): Draws a regular triangle
inscribed in a construction geometry circle. (v0.15)

Page 34 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

◾ (/wiki/index.php?title=File:Sketcher_CreateSquare.png) Square
(/wiki/index.php?title=Sketcher_Square): Draws a regular square
inscribed in a construction geometry circle. (v0.15)

◾ (/wiki/index.php?title=File:Sketcher_CreatePentagon.png) Pentagon
(/wiki/index.php?title=Sketcher_Pentagon): Draws a regular pentagon
inscribed in a construction geometry circle. (v0.15)

◾ (/wiki/index.php?title=File:Sketcher_CreateHexagon.png) Hexagon
(/wiki/index.php?title=Sketcher_Hexagon): Draws a regular hexagon
inscribed in a construction geometry circle. (v0.15)

◾ (/wiki/index.php?title=File:Sketcher_CreateHeptagon.png)
Heptagon (/wiki/index.php?title=Sketcher_Heptagon): Draws a regular
heptagon inscribed in a construction geometry circle. (v0.15)

◾ (/wiki/index.php?title=File:Sketcher_CreateOctagon.png) Octagon
(/wiki/index.php?title=Sketcher_Octagon): Draws a regular octagon
inscribed in a construction geometry circle. (v0.15)

◾ (/wiki/index.php?title=File:Sketcher_CreateSlot.png) Slot
(/wiki/index.php?title=Sketcher_Slot): Draws an oval by selecting the
center of one semicircle and an endpoint of the other semicircle.

◾ (/wiki/index.php?title=File:Sketcher_CreateFillet.png) Fillet
(/wiki/index.php?title=Sketcher_Fillet): Makes a fillet between two lines
joined at one point. Select both lines or click on the corner point, then
activate the tool.

◾ (/wiki/index.php?title=File:Sketcher_Trimming.png) Trimming
(/wiki/index.php?title=Sketcher_Trimming): Trims a line, circle or arc
with respect to the clicked point.

◾ (/wiki/index.php?title=File:Sketcher_External.png) External
Geometry (/wiki/index.php?title=Sketcher_External): Creates an edge
linked to external geometry.

◾ (/wiki/index.php?title=File:Sketcher_AlterConstruction.png)
Construction Mode (/wiki/index.php?title=Sketcher_ConstructionMode):
Toggles an element to/from construction mode. A construction object
will not be used in a 3D geometry operation and is only visible while
editing the Sketch that contains it. This is the icon that was used
through v0.15. Until FreeCAD v0.16 the user had to first create regular
(white) geometry in Sketcher and then use this tool to change it to
Construction Geometry (blue).

◾ (/wiki/index.php?title=File:Sketcher_ToggleConstruction.png)
Construction Mode (/wiki/index.php?
title=Sketcher_ToggleConstruction): In FreeCAD v0.16 the ability to
create geometry directly in Construction Mode was added, and so the
icon was changed to this one. Selecting existing Sketcher geometry and
then clicking this tool toggles that geometry between regular and
construction mode just as in previous FreeCAD versions. Starting with
FreeCAD v0.16, selecting this tool when no Sketcher geometry is
selected changes the mode (regular vs. construction) in which future
objects will be created.

Sketcher Constraints

Constraints are used to define lengths, set rules between sketch elements,
and to lock the sketch along the vertical and horizontal axes. Some
constraints require the Helper constraints (/wiki/index.php?
title=Sketcher_helper_constraint)

Not associated with numeric data

Page 35 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

◾ (/wiki/index.php?title=File:Constraint_PointOnPoint.png)
Coincident (/wiki/index.php?title=Constraint_PointOnPoint): Affixes a
point onto (coincident with) one or more other points.

◾ (/wiki/index.php?title=File:Constraint_PointOnObject.png) Point On
Object (/wiki/index.php?title=Constraint_PointOnObject): Affixes a
point onto another object such as a line, arc, or axis.

◾ (/wiki/index.php?title=File:Constraint_Vertical.png) Vertical
(/wiki/index.php?title=Constraint_Vertical): Constrains the selected
lines or polyline elements to a true vertical orientation. More than one
object can be selected before applying this constraint.

◾ (/wiki/index.php?title=File:Constraint_Horizontal.png) Horizontal
(/wiki/index.php?title=Constraint_Horizontal): Constrains the selected
lines or polyline elements to a true horizontal orientation. More than
one object can be selected before applying this constraint.

◾ (/wiki/index.php?title=File:Constraint_Parallel.png) Parallel
(/wiki/index.php?title=Constraint_Parallel): Constrains two or more
lines parallel to one another.

◾ (/wiki/index.php?title=File:Constraint_Perpendicular.png)
Perpendicular (/wiki/index.php?title=Constraint_Perpendicular):
Constrains two lines perpendicular to one another, or constrains a line
perpendicular to an arc endpoint.

◾ (/wiki/index.php?title=File:Constraint_Tangent.png) Tangent
(/wiki/index.php?title=Constraint_Tangent): Creates a tangent
constraint between two selected entities, or a co-linear constraint
between two line segments. A line segment does not have to lie directly
on an arc or circle to be constrained tangent to that arc or circle.

◾ (/wiki/index.php?title=File:Constraint_EqualLength.png) Equal
Length (/wiki/index.php?title=Constraint_EqualLength): Constrains two
selected entities equal to one another. If used on circles or arcs their
radii will be set equal.

◾ (/wiki/index.php?title=File:Constraint_Symmetric.png) Symmetric
(/wiki/index.php?title=Constraint_Symmetric): Constrains two points
symmetrically about a line, or constrains the first two selected points
symmetrically about a third selected point.

Associated with numeric data
For these constraints you can use the expressions (/wiki/index.php?
title=Expressions). The data may be taken from a spreadsheet
(/wiki/index.php?title=Spreadsheet_Workbench).

◾ (/wiki/index.php?title=File:Sketcher_ConstrainLock.png) Lock
(/wiki/index.php?title=Constraint_Lock): Constrains the selected item
by setting vertical and horizontal distances relative to the origin,
thereby locking the location of that item. These constraint distances
can be edited later.

◾ (/wiki/index.php?title=File:Constraint_HorizontalDistance.png)
Horizontal Distance (/wiki/index.php?
title=Constraint_HorizontalDistance): Fixes the horizontal distance
between two points or line endpoints. If only one item is selected, the
distance is set to the origin.

◾ (/wiki/index.php?title=File:Constraint_VerticalDistance.png) Vertical
Distance (/wiki/index.php?title=Constraint_VerticalDistance): Fixes the
vertical distance between 2 points or line endpoints. If only one item is
selected, the distance is set to the origin.

Page 36 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

◾ (/wiki/index.php?title=File:Constraint_Length.png) Length
(/wiki/index.php?title=Constraint_Length): Defines the distance of a
selected line by constraining its length, or defines the distance between
two points by constraining the distance between them.

◾ (/wiki/index.php?title=File:Constraint_Radius.png) Radius
(/wiki/index.php?title=Constraint_Radius): Defines the radius of a
selected arc or circle by constraining the radius.

◾ (/wiki/index.php?title=File:Constraint_InternalAngle.png) Internal
Angle (/wiki/index.php?title=Constraint_InternalAngle): Defines the
internal angle between two selected lines.

◾ (/wiki/index.php?title=File:Constraint_SnellsLaw.png) Snell's Law
(/wiki/index.php?title=Constraint_SnellsLaw): Constrains two lines to
obey a refraction law to simulate the light going through an interface. (v
0.15)

◾ (/wiki/index.php?title=File:Constraint_InternalAlignment.png)
Internal Alignment (/wiki/index.php?
title=Constraint_Internal_Alignment): Aligns selected elements to
selected shape (e.g. a line to become major axis of an ellipse).

◾ (/wiki/index.php?title=File:Sketcher_ToggleConstraint.png) Toggle
Constraint (/wiki/index.php?title=Sketcher_ToggleConstraint): Toggles
the toolbar or the selected constraints to/from reference mode. v0.16

Other

◾ (/wiki/index.php?title=File:Sketcher_NewSketch.png) New sketch
(/wiki/index.php?title=Sketcher_NewSketch): Creates a new sketch on a
selected face or plane. If no face is selected while this tool is executed
the user is prompted to select a plane from a pop-up window.

◾ (/wiki/index.php?title=File:Sketcher_EditSketch.png) Edit sketch
(/wiki/index.php?title=Sketcher_EditSketch): Edit the selected Sketch.

◾ (/wiki/index.php?title=File:Sketcher_LeaveSketch.png) Leave sketch
(/wiki/index.php?title=Sketcher_LeaveSketch): Leave the Sketch editing
mode.

◾ (/wiki/index.php?title=File:Sketcher_ViewSketch.png) View sketch
(/wiki/index.php?title=Sketcher_ViewSketch): Sets the model view
perpendicular to the sketch plane.

◾ (/wiki/index.php?title=File:Sketcher_MapSketch.png) Map sketch to
face (/wiki/index.php?title=Sketcher_MapSketch): Maps a sketch to the
previously selected face of a solid.

◾ Reorient sketch (/wiki/index.php?title=Sketcher_Reorient): Allows you
to change the position of a sketch

◾ Validate sketch (/wiki/index.php?title=Sketcher_Validate): It allows you
to check if there are in the tolerance of different points and to match
them.

◾ (/wiki/index.php?title=File:Sketcher_MergeSketch.png) Merge
sketches (/wiki/index.php?title=Sketcher_MergeSketch): Merge two or
more sketches. [v 0.15]

◾ (/wiki/index.php?title=File:Sketcher_MirrorSketch.png) Mirror
sketch (/wiki/index.php?title=Sketcher_MirrorSketch): Mirror a sketch
along the x-axis, the y-axis or the origin [v 0.16]

Page 37 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

◾ (/wiki/index.php?title=File:Sketcher_CloseShape.png) Close Shape
(/wiki/index.php?title=Sketcher_CloseShape): Creates a closed shape
by applying coincident constraints to endpoints [v 0.15]

◾ (/wiki/index.php?title=File:Sketcher_ConnectLines.png) Connect
Edges (/wiki/index.php?title=Sketcher_ConnectLines): Connect sketcher
elements by applying coincident constraints to endpoints [v 0.15]

◾ (/wiki/index.php?title=File:Sketcher_SelectConstraints.png) Select
Constraints (/wiki/index.php?title=Sketcher_SelectConstraints): Selects
the constraints of a sketcher element [v 0.15]

◾ (/wiki/index.php?title=File:Sketcher_SelectOrigin.png) Select Origin
(/wiki/index.php?title=Sketcher_SelectOrigin): Selects the origin of a
sketch [v 0.15]

◾ (/wiki/index.php?title=File:Sketcher_SelectVerticalAxis.png) Select
Vertical Axis (/wiki/index.php?title=Sketcher_SelectVerticalAxis): Selects
the vertical axis of a sketch [v 0.15]

◾ (/wiki/index.php?title=File:Sketcher_SelectHorizontalAxis.png)
Select Horizontal Axis (/wiki/index.php?
title=Sketcher_SelectHorizontalAxis): Selects the horizontal axis of a
sketch [v 0.15]

◾ (/wiki/index.php?
title=File:Sketcher_SelectRedundantConstraints.png) Select Redundant
Constraints (/wiki/index.php?
title=Sketcher_SelectRedundantConstraints): Selects redundant
constraints of a sketch [v 0.15]

◾ (/wiki/index.php?
title=File:Sketcher_SelectConflictingConstraints.png) Select Conflicting
Constraints (/wiki/index.php?
title=Sketcher_SelectConflictingConstraints): Selects conflicting
constraints of a sketch [v 0.15]

◾ (/wiki/index.php?
title=File:Sketcher_SelectElementsAssociatedWithConstraints.png)
Select Elements Associated with constraints (/wiki/index.php?
title=Sketcher_SelectElementsAssociatedWithConstraints): Select
sketcher elements associated with constraints [v 0.15]

◾ (/wiki/index.php?title=File:Sketcher_Element_Ellipse_All.png)
Show/Hide internal geometry (/wiki/index.php?
title=Sketcher_Show_Hide_Internal_Geometry): Recreates
missing/deletes unneeded geometry aligned to internal geometry of a
selected element (applicable only to ellipse so far). [v 0.15]

◾ (/wiki/index.php?title=File:Sketcher_Symmetry.png) Symmetry
(/wiki/index.php?title=Sketcher_Symmetry): Copies a sketcher element
symmetrical to a chosen line [v 0.16]

◾ (/wiki/index.php?title=File:Sketcher_Clone.png) Clone
(/wiki/index.php?title=Sketcher_Clone): Clones a sketcher element [v
0.16]

◾ (/wiki/index.php?title=File:Sketcher_Copy.png) Copy
(/wiki/index.php?title=Sketcher_Copy): Copies a sketcher element [v
0.16]

Page 38 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

◾ (/wiki/index.php?title=File:Sketcher_RectangularArray.png)
Rectangular Array (/wiki/index.php?title=Sketcher_RectangularArray):
Creates an array of slected sketcher elements [v 0.16]

The Part Design Tools
Construction tools

These are tools for creating solid objects or removing material from an
existing solid object.

◾ (/wiki/index.php?title=File:PartDesign_Pad.png) Pad
(/wiki/index.php?title=PartDesign_Pad): Extrudes a solid object from a
selected sketch.

◾ (/wiki/index.php?title=File:PartDesign_Pocket.png) Pocket
(/wiki/index.php?title=PartDesign_Pocket): Creates a pocket from a
selected sketch. The sketch must be mapped to an existing solid
object's face.

◾ (/wiki/index.php?title=File:PartDesign_Revolution.png) Revolution
(/wiki/index.php?title=PartDesign_Revolution): Creates a solid by
revolving a sketch around an axis. The sketch must be a closed profile
to get a solid object.

◾ (/wiki/index.php?title=File:PartDesign_Groove.png) Groove
(/wiki/index.php?title=PartDesign_Groove): Creates a groove by
revolving a sketch around an axis. The sketch must be mapped to an
existing solid object's face.

Modification tools

These are tools for modifying existing objects. They will allow you to choose
which object to modify.

◾ (/wiki/index.php?title=File:PartDesign_Fillet.png) Fillet
(/wiki/index.php?title=PartDesign_Fillet): Fillets (rounds) edges of an
object.

◾ (/wiki/index.php?title=File:PartDesign_Chamfer.png) Chamfer
(/wiki/index.php?title=PartDesign_Chamfer): Chamfers edges of an
object.

◾ (/wiki/index.php?title=File:PartDesign_Draft.png) Draft
(/wiki/index.php?title=PartDesign_Draft): Applies angular draft to faces
of an object.

Transformation tools

These are tools for transforming existing features. They will allow you to
choose which features to transform.

◾ (/wiki/index.php?title=File:PartDesign_Mirrored.png) Mirrored
(/wiki/index.php?title=PartDesign_Mirrored): Mirrors features on a
plane or face.

◾ (/wiki/index.php?title=File:PartDesign_LinearPattern.png) Linear
Pattern (/wiki/index.php?title=PartDesign_LinearPattern): Creates a
linear pattern of features.

◾ (/wiki/index.php?title=File:PartDesign_PolarPattern.png) Polar
Pattern (/wiki/index.php?title=PartDesign_PolarPattern): Creates a
polar pattern of features.

◾ (/wiki/index.php?title=File:PartDesign_Scaled.png) Scaled
(/wiki/index.php?title=PartDesign_Scaled): Scales features to a
different size.

Page 39 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

◾ (/wiki/index.php?title=File:PartDesign_MultiTransform.png)
MultiTransform (/wiki/index.php?title=PartDesign_MultiTransform):
Allows creating a pattern with any combination of the other
transformations.

Extras

Some optional functionality that has been created for the PartDesign
Workbench:

◾ (/wiki/index.php?title=File:PartDesign_WizardShaft.png) Shaft
design wizard (/wiki/index.php?title=PartDesign_WizardShaft):
Generates a shaft from a table of values and allows to analyze forces
and moments

◾ (/wiki/index.php?title=File:PartDesign_InternalExternalGear.svg)
Involute gear (/wiki/index.php?title=PartDesign_InvoluteGear): allows
you to create gear

Feature properties

Properties

There are two types of feature properties, accessible through tabs at the
bottom of the Property editor:

VIEW View : properties related to the visual display of the object.

DATA Data : properties related to the physical parameters of an
object.

View

Base
◾ VIEW Bounding Box : To view the occupation, and, overall, of the object

dimensions in space. Value False, or True (Default, False).

◾ VIEW Control Point : Value False, or True (Default, False).

 (/wiki/index.php?

title=File:PartDesign_Revolution_en_03.png)

Page 40 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

◾ VIEW Deviation : Sets the accuracy of the polygonal representation of the
model in 3d view (tessellation). Lower values = better quality. The value
is in percent of object's size (deviation in mm =
(w+h+d)/3*valueInPercent/100, where w,h,d are sizes of bounding box).

◾ VIEW Display Mode :Display mode of the form, Flat lines, Shaded,
Wireframe, Points (/wiki/index.php?
title=File:Vue_DisplayModePartDesign_fr_00.png). (Default, Flat lines).

◾ VIEW Lighting : Lighting One side, Two side (/wiki/index.php?
title=File:Vue_Lighting_fr_00.png). (Default, Two side).

◾ VIEW Line Color : Gives the color of the line (edges) (Default, 25, 25, 25).

◾ VIEW Line Width : Gives the thickness of the line (edges) (Default, 2).

◾ VIEW Point Color : Gives the color of the points (ends of the form)
(Default, 25, 25, 25).

◾ VIEW Point Size : Gives the size of the points (Default, 2).

◾ VIEW Selectable : Allows the selection of the form. Value False, ou True
(Default, True).

◾ VIEW Shape Color : Give the color shape (default, 204, 204, 204).

◾ VIEW Transparency : Sets the degree of transparency in the form of 0 to
100 (Default, 0).

◾ VIEW Visibility : Determines the visibility of the form (like the bar
SPACE). Value False, or True (Default, True).

Data

Base DATA Angle : The argument Angle, indicates the angle that will be used
with the option Axis (below). Here, an angle is defined. The angle on the axis
is set with the option Axis.
The object takes the specified angle around the specified axis.

 (/wiki/index.php?

title=File:PartDesign_Revolution_en_04.png)

Page 41 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

An example, if you create an object with a required revolution should be
rotate functionality of a certain amount, in order to enable it to take the
same angle that another element existing.

DATA Axis : This option specifies the axis/axes to rotate the created object.
The exact value of rotation comes from the angle (see above) option.
This option takes three arguments, these arguments, are transmitted in the
form of numbers, x, y or z. Adding a value, more of an axis, will the rotation
to each specified axis angle.
For example, with a Angle of 15 ° : specifying, 1.0 for x and 2.0 for y, will
rotate 15 ° and 30 ° in the y-axis and the x-axis (final position),

DATA Base : This option specifies the offset in either axes x, y, or z, and
accept any number as the argument for each field.

DATA Label : The Label is the name given to the operation, this name can be
changed at convenience.

DATA Placement : [(0.00 0.00 1.00);0.00;(0.00 0.00 0.00)] Summary below
data. Every feature has a placement that can be controlled through the Data
Properties table. It controls the placement of the part with respect to the
coordinate system. NOTE: The placement options do not affect the physical
dimensions of the feature, but merely its position in space!
If you select the title Placement
(/wiki/index.php?title=File:Tache_Placement_01_fr_00.png), a button with
three small points appears, clicking this button ... , you have access to the

options window Tasks_Placement (/wiki/index.php?
title=Tasks_Placement).

DATA Angle : The Angle argument specifies the angle to be used with the axis
option (below). An angle is set here, and the axis that the angle acts upon is
set with the axis option. The feature is rotated by the specified angle, about
the specified axis. A usage example might be if you created a revolution
feature as required, but then needed to rotate the whole feature by some
amount, in order to allow it to line-up with another pre-existing feature.

DATA Axis : This option specifies the axis/axes about which the created
feature is to be rotated. The exact value of rotation comes from the angle
option (above). This option takes three arguments, which are passed as
numbers to either the x, y, or z boxes in the tool. Adding a value to more
than one of the axes will cause the part to be rotated by the angle in each
axis. For example, with an angle of 15° set, specifying a value of 1.0 for x,
and 2.0 for y will cause the finished part to be rotated 15° in the x-axis AND
30° in the y-axis.

DATA Position : This option specifies the base point to which all dimensions
refer. This option takes three arguments, which are passed as numbers to
either the x, y, or z boxes in the tool. Adding a value to more than one of the
boxes will cause the part to be translated by the number of units along the
corresponding axis.

PS: The displayed properties can vary, depending on the tool used.

Tutorials
Only for a development version of FreeCAD that is not currently available as
a binary or installer:

◾ PartDesign Bearingholder Tutorial I (/wiki/index.php?
title=PartDesign_Bearingholder_Tutorial_I)

◾ PartDesign Bearingholder Tutorial II (/wiki/index.php?
title=PartDesign_Bearingholder_Tutorial_II)

◾ PartDesign tutorial (/wiki/index.php?title=PartDesign_tutorial)

◾ Basic Part Design Tutorial (/wiki/index.php?
title=Basic_Part_Design_Tutorial)

Page 42 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Workbenches (/wiki/index.php?title=Workbenches)
next: Mesh Workbench > (/wiki/index.php?title=Mesh_Workbench)

◾ Sketcher tutorial (/wiki/index.php?title=Sketcher_tutorial)

Index (/wiki/index.php?title=Online_Help_Toc)

The Mesh workbench
The Mesh Workbench handles triangle meshes
(http://en.wikipedia.org/wiki/Triangle_mesh). Meshes are a special type of
3D object, composed of triangles connected by their edges and their corners
(also called vertices).

(/wiki/index.php?title=File:Mesh_example.jpg)

An example of a mesh object

Many 3D applications use meshes as their primary type of 3D object, like
sketchup (http://en.wikipedia.org/wiki/Sketchup), blender
(http://en.wikipedia.org/wiki/Blender_(software)), maya
(http://en.wikipedia.org/wiki/Maya_(software)) or 3d studio max
(http://en.wikipedia.org/wiki/3d_max). Since meshes are very simple
objects, containing only vertices (points), edges and (triangular) faces, they
are very easy to create, modify, subdivide, stretch, and can easily be passed
from one application to another without any loss. Besides, since they
contain very simple data, 3D applications can usually manage very large
quantities of them without any problem. For those reasons, meshes are
often the 3D object type of choice for applications dealing with movies,
animation, and image creation.

In the field of engineering, however, meshes present one big limitation:
They are very dumb objects, only composed of points,lines and faces. They
are only made of surfaces, and have no mass information, so they don't
behave as solids. In a mesh there is no automatic way to know if a point is
inside or outside the object. This means that all solid-based operations,
such as addition or subtraction, are always a bit difficult to perform on
meshes, and return errors often.

In FreeCAD, since it is an engineering application, we would obviously prefer
to work with more intelligent types of 3D objects, that can carry more
informations, such as mass, solid behaviour, or even custom parameters.
The mesh module was first created to serve as a testbed, but to be able to
read, manipulate and convert meshes is also highly important for FreeCAD.
Very often, in your workflow, you will receive 3D data in mesh format. You
will need to handle that data, analyse it to detect errors or other problems
that prevent converting them to more intelligent objects, and finally,
convert them to more intelligent objects, handled by the Part Module
(/wiki/index.php?title=Part_Module).

Page 43 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Using the mesh module
The mesh module has currently a very simple interface, all its functions are
grouped in the Mesh menu entry. The most important operations you can
currently do with meshes are:

◾ (/wiki/index.php?title=File:Mesh_ImportMesh.png) Import Mesh
(/wiki/index.php?title=Mesh_Import): Import meshes in several file
formats

◾ (/wiki/index.php?title=File:Mesh_ExportMesh.png) Export Mesh
(/wiki/index.php?title=Mesh_Export): Export meshes in several file
formats

◾ (/wiki/index.php?title=File:Mesh_MeshFromShape.png) Create Mesh
from shape (/wiki/index.php?title=Mesh_MeshFromShape): Convert Part
(/wiki/index.php?title=Part_Module) objects into meshes

◾ (/wiki/index.php?title=File:Mesh_HarmonizeNormals.png)
Harmonize Normals (/wiki/index.php?title=Mesh_HarmonizeNormals):
Harmonize normals

◾ (/wiki/index.php?title=File:Mesh_FlipNormals.png) Flip Normals
(/wiki/index.php?title=Mesh_FlipNormals): Flip normals
(http://en.wikipedia.org/wiki/Surface_normal)

◾ Fill Holes... (/wiki/index.php?title=Mesh_FillHoles): Fill up holes
◾ (/wiki/index.php?title=File:Mesh_FillInteractiveHole.png) Close hole

(/wiki/index.php?title=Mesh_FillInteractiveHole): Close holes in meshes
◾ (/wiki/index.php?title=File:Mesh_RemoveComponents.png) Remove

components... (/wiki/index.php?title=Mesh_RemoveComponents):
Remove components of meshes

◾ Remove components by hand... (/wiki/index.php?
title=Mesh_RemoveCompByHand): Remove components of meshes by
hand

◾ Add triangle (/wiki/index.php?title=Mesh_AddTriangle): Add triangle
◾ Smooth... (/wiki/index.php?title=Mesh_Smooth): Smooth mesh

◾ Analyze curvature, faces, and check if a mesh can be safely converted
into a solid
◾ Evaluate & Repair mesh... (/wiki/index.php?

title=Mesh_EvaluateRepair): Evaluates and repairs meshes
◾ (/wiki/index.php?title=File:Mesh_EvaluateFacet.png) Face Info

(/wiki/index.php?title=Mesh_EvaluateFacet): Gives info on faces
◾ Curvature Info (/wiki/index.php?title=Mesh_EvaluateCurvature):

Gives info on curvature
◾ Check solid mesh (/wiki/index.php?title=Mesh_EvaluateSolid):

Checks the solid if it can be converted to a mesh
◾ Boundings info... (/wiki/index.php?title=Mesh_BoundingBox):

Evaluates the bounding box of a mesh

◾ (/wiki/index.php?title=File:Mesh_Regular_Solid.png) Regular solid...
(/wiki/index.php?title=Mesh_BuildRegularSolid) Create mesh primitives,
like cubes, cylinders, cones, or spheres:
◾ (/wiki/index.php?title=File:Mesh_Cube.png) Create a mesh

cube

Page 44 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: PartDesign Workbench (/wiki/index.php?
title=PartDesign_Workbench)
next: OpenSCAD Module > (/wiki/index.php?
title=OpenSCAD_Module)

◾ (/wiki/index.php?title=File:Mesh_Cylinder.png) Create a mesh
cylinder

◾ (/wiki/index.php?title=File:Mesh_Cone.png) Create a mesh cone
◾ (/wiki/index.php?title=File:Mesh_Sphere.png) Create a mesh

sphere
◾ (/wiki/index.php?title=File:Mesh_Ellipsoid.png) Create a mesh

ellipsoid
◾ (/wiki/index.php?title=File:Mesh_Torus.png) Create a mesh

torus

◾ Do Boolean operations with meshes
◾ Union (/wiki/index.php?title=Mesh_Union): Does a union (fusion)

on meshes
◾ Intersection (/wiki/index.php?title=Mesh_Intersection): Does an

intersection (common) on meshes
◾ Difference (/wiki/index.php?title=Mesh_Difference): Does a

difference (cut) on meshes

◾ Merge (/wiki/index.php?title=Mesh_Merge): Merges meshes
◾ Select Mesh (/wiki/index.php?title=Mesh_SelectMesh): Selects meshes
◾ (/wiki/index.php?title=File:Mesh_Cut.png) Cut mesh

(/wiki/index.php?title=Mesh_Cut): Cut meshes along a line
◾ Split Mesh (/wiki/index.php?title=Mesh_SplitMesh): Splits meshes
◾ (/wiki/index.php?title=File:Mesh_MakeSegment.png) Make segment

(/wiki/index.php?title=Mesh_MakeSegment): Makes a segment
◾ Trim mesh (/wiki/index.php?title=Mesh_TrimMesh): Trims meshes
◾ Trim mesh with a plane (/wiki/index.php?

title=Mesh_TrimMeshWithPlane): Trims meshes with a plane
◾ Create mesh segments... (/wiki/index.php?

title=Mesh_CreateMeshSegment): Creates mesh segments
◾ (/wiki/index.php?title=File:Mesh_CurvaturePlot.png) Curvature Plot

(/wiki/index.php?title=Mesh_CurvaturePlot): Creates a curvature plot

These are only some of the basic operations currently present in the Mesh
module interface.
More mesh tools are available in the OpenSCAD Workbench
(/wiki/index.php?title=OpenSCAD_Workbench).
But the FreeCAD meshes can also be handled in many more ways by
scripting (/wiki/index.php?title=Mesh_Scripting).

Links

◾ FreeCAD and Mesh Import (/wiki/index.php?
title=FreeCAD_and_Mesh_Import)

Index (/wiki/index.php?title=Online_Help_Toc)

Page 45 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

The Part workbench
The CAD capabilities of FreeCAD are based on the OpenCasCade
(http://en.wikipedia.org/wiki/Open_CASCADE) kernel. The Part module
allows FreeCAD to access and use the OpenCasCade objects and functions.
OpenCascade is a professional-level CAD kernel, that features advanced 3D
geometry manipulation and objects. The Part objects, unlike Mesh Module
(/wiki/index.php?title=Mesh_Module) objects, are much more complex, and
therefore permit much more advanced operations, like coherent boolean
operations, modifications history and parametric behaviour.

(/wiki/index.php?title=File:Part_example.jpg)

Example of Part shapes in FreeCAD

The tools

The Part module tools are all located in the Part menu that appears when
you load the Part module.

Primitives

These are tools for creating primitive objects.

◾ (/wiki/index.php?title=File:Part_Box.png) Box (/wiki/index.php?
title=Part_Box): Draws a box by specifying its dimensions

◾ (/wiki/index.php?title=File:Part_Cone.png) Cone (/wiki/index.php?
title=Part_Cone): Draws a cone by specifying its dimensions

◾ (/wiki/index.php?title=File:Part_Cylinder.png) Cylinder
(/wiki/index.php?title=Part_Cylinder): Draws a cylinder by specifying its
dimensions

◾ (/wiki/index.php?title=File:Part_Sphere.png) Sphere
(/wiki/index.php?title=Part_Sphere): Draws a sphere by specifying its
dimensions

◾ (/wiki/index.php?title=File:Part_Torus.png) Torus (/wiki/index.php?
title=Part_Torus): Draws a torus (ring) by specifying its dimensions

◾ (/wiki/index.php?title=File:Part_CreatePrimitives.png)
CreatePrimitives (/wiki/index.php?title=Part_CreatePrimitives): A tool to
create various parametric geometric primitives

◾ (/wiki/index.php?title=File:Part_Shapebuilder.png) Shapebuilder
(/wiki/index.php?title=Part_Shapebuilder): A tool to create more
complex shapes from various parametric geometric primitives

Modifying objects

Page 46 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

These are tools for modifying existing objects. They will allow you to choose
which object to modify.

◾ (/wiki/index.php?title=File:Part_Booleans.png) Booleans
(/wiki/index.php?title=Part_Booleans): Performs boolean operations on
objects

◾ (/wiki/index.php?title=File:Part_Fuse.png) Fuse (/wiki/index.php?
title=Part_Fuse): Fuses (unions) two objects

◾ (/wiki/index.php?title=File:Part_Common.png) Common
(/wiki/index.php?title=Part_Common): Extracts the common
(intersection) part of two objects

◾ (/wiki/index.php?title=File:Part_Cut.png) Cut (/wiki/index.php?
title=Part_Cut): Cuts (subtracts) one object from another

◾ (/wiki/index.php?title=File:Part_JoinConnect.png) Join features
(/wiki/index.php?title=Part_CompJoinFeatures): smart booleans for
walled objects (e.g., pipes) (v0.16)
◾ (/wiki/index.php?title=File:Part_JoinConnect.png) Connect

(/wiki/index.php?title=Part_JoinConnect): Connects interiors of
objects (v0.16)

◾ (/wiki/index.php?title=File:Part_JoinEmbed.png) Embed
(/wiki/index.php?title=Part_JoinEmbed): Embeds a walled object
into another walled object (v0.16)

◾ (/wiki/index.php?title=File:Part_JoinCutout.png) Cutout
(/wiki/index.php?title=Part_JoinCutout): Creates a cutout in a wall
of an object for another walled object (v0.16)

◾ (/wiki/index.php?title=File:Part_Extrude.png) Extrude
(/wiki/index.php?title=Part_Extrude): Extrudes planar faces of an object

◾ (/wiki/index.php?title=File:Part_Fillet.png) Fillet (/wiki/index.php?
title=Part_Fillet): Fillets (rounds) edges of an object

◾ (/wiki/index.php?title=File:Part_Revolve.png) Revolve
(/wiki/index.php?title=Part_Revolve): Creates a solid by revolving
another object (not solid) around an axis

◾ (/wiki/index.php?title=File:Part_Section.png) Section
(/wiki/index.php?title=Part_Section): Creates a section by intersecting
an object with a section plane

◾ (/wiki/index.php?title=File:Part_SectionCross.png) Cross sections...
(/wiki/index.php?title=Part_SectionCross):

◾ (/wiki/index.php?title=File:Part_Chamfer.png) Chamfer
(/wiki/index.php?title=Part_Chamfer): Chamfers edges of an object

◾ (/wiki/index.php?title=File:Part_Mirror.png) Mirror
(/wiki/index.php?title=Part_Mirror): Mirrors the selected object on a
given mirror plane

◾ (/wiki/index.php?title=File:Part_RuledSurface.png) Ruled Surface
(/wiki/index.php?title=Part_RuledSurface):

◾ (/wiki/index.php?title=File:Part_Sweep.png) Sweep
(/wiki/index.php?title=Part_Sweep): Sweeps one or more profiles along
a path

◾ (/wiki/index.php?title=File:Part_Loft.png) Loft (/wiki/index.php?
title=Part_Loft): Lofts from one profile to another

Page 47 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

◾ (/wiki/index.php?title=File:Part_Offset.png) Offset
(/wiki/index.php?title=Part_Offset): Creates a scaled copy of the
original object.

◾ (/wiki/index.php?title=File:Part_Thickness.png) Thickness
(/wiki/index.php?title=Part_Thickness): Assign a thickness to the faces
of a shape.

Other tools

◾ (/wiki/index.php?title=File:Part_ImportCAD.png) Import CAD
(/wiki/index.php?title=Part_ImportCAD): This tool allows you to add a
file *.IGES, *.STEP, *.BREP to the current document.

◾ (/wiki/index.php?title=File:Part_ExportCAD.png) Export CAD
(/wiki/index.php?title=Part_ExportCAD): This tool allows you to export a
part object in a *.IGES, *.STEP, *.BREP file.

◾ (/wiki/index.php?title=File:Part_ShapeFromMesh.png) Shape from
Mesh (/wiki/index.php?title=Part_ShapeFromMesh): Creates a shape
object from a mesh object.

◾ Convert to solid (/wiki/index.php?title=Part_ConvertToSolid): Converts
a shape object to a solid object.

◾ Reverse shapes (/wiki/index.php?title=Part_ReverseShapes): Flips the
normals of all faces of the selected object.

◾ Create simple copy (/wiki/index.php?title=Part_CreateSimpleCopy):
Creates a simple copy of the selected object.

◾ Make compound (/wiki/index.php?title=Part_MakeCompound): Creates
a compound from the selected objects.

◾ (/wiki/index.php?title=File:Part_RefineShape.png) Refine shape
(/wiki/index.php?title=Part_RefineShape): Cleans faces by removing
unnecessary lines.

◾ (/wiki/index.php?title=File:Part_CheckGeometry.png) Check
geometry (/wiki/index.php?title=Part_CheckGeometry): Checks the
geometry of selected objects for errors.

◾ Measure (/wiki/index.php?title=Std_Measure_Menu): Allows linear and
angular measurement between points/edges/faces.

Boolean Operations

An example of union (Fuse), intersection (Common) and difference (Cut)

(/wiki/index.php?title=File:Part_BooleanOperations.png)

Page 48 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Explaining the concepts

In OpenCasCade terminology, we distinguish between geometric primitives
and (topological) shapes. A geometric primitive can be a point, a line, a
circle, a plane, etc. or even some more complex types like a B-Spline curve
or surface. A shape can be a vertex, an edge, a wire, a face, a solid or a
compound of other shapes. The geometric primitives are not made to be
directly displayed on the 3D scene, but rather to be used as building
geometry for shapes. For example, an edge can be constructed from a line
or from a portion of a circle.

We could say, to resume, that geometry primitive are "shapeless" building
blocks, and shapes are the real spatial geometry built on it.

To get a complete list of all of them refer to the OCC documentation
(http://www.opencascade.org/org/doc/) (Alternative: sourcearchive.com
(http://opencascade.sourcearchive.com/documentation/6.3.0.dfsg.1-1/classes.html)
and search for Geom_* (for geometry) and TopoDS_* (for shapes). There you
can also read more about the differences between geometric objects and
shapes. Please note that unfortunately the official OCC documentation is
not available online (you must download an archive) and is mostly aimed at
programmers, not at end-users. But hopefully you'll find enough
information to get started here.

The geometric types actually can be divided into two major groups: curves
and surfaces. Out of the curves (line, circle, ...) you can directly build an
edge, out of the surfaces (plane, cylinder, ...) a face can be built. For
example, the geometric primitive line is unlimited, i.e. it is defined by a base
vector and a direction vector while its shape representation must be
something limited by a start and end point. And a box -- a solid -- can be
created by six limited planes.

From an edge or face you can also go back to its geometric primitive counter
part.

Thus, out of shapes you can build very complex parts or, the other way
round, extract all sub-shapes a more complex shape is made of.

Scripting

The main data structure used in the Part module is the BRep
(http://en.wikipedia.org/wiki/Boundary_representation) data type from
OpenCascade. Almost all contents and object types of the Part module are
now available to python scripting. This includes geometric primitives, such
as Line and Circle (or Arc), and the whole range of TopoShapes, like
Vertexes, Edges, Wires, Faces, Solids and Compounds. For each of those
objects, several creation methods exist, and for some of them, especially
the TopoShapes, advanced operations like boolean
union/difference/intersection are also available. Explore the contents of
the Part module, as described in the FreeCAD Scripting Basics
(/wiki/index.php?title=FreeCAD_Scripting_Basics) page, to know more.

Examples

To create a line element switch to the Python console and type in:

import Part,PartGui

doc=App.newDocument()

l=Part.Line()

l.StartPoint=(0.0,0.0,0.0)

l.EndPoint=(1.0,1.0,1.0)

doc.addObject("Part::Feature","Line").Shape=l.toShape()

doc.recompute()

Let's go through the above python example step by step:

import Part,PartGui

doc=App.newDocument()

loads the Part module and creates a new document

Page 49 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: OpenSCAD Module (/wiki/index.php?
title=OpenSCAD_Module)

next: Drawing Module > (/wiki/index.php?title=Drawing_Module)

l=Part.Line()

l.StartPoint=(0.0,0.0,0.0)

l.EndPoint=(1.0,1.0,1.0)

Line is actually a line segment, hence the start and endpoint.

doc.addObject("Part::Feature","Line").Shape=l.toShape()

This adds a Part object type to the document and assigns the shape
representation of the line segment to the 'Shape' property of the added
object. It is important to understand here that we used a geometric
primitive (the Part.Line) to create a TopoShape out of it (the toShape()
method). Only Shapes can be added to the document. In FreeCAD, geometry
primitives are used as "building structures" for Shapes.

doc.recompute()

Updates the document. This also prepares the visual representation of the
new part object.

Note that a Line can be created by specifying its start and endpoint directly
in the constructor, for example Part.Line(point1,point2), or we can create a
default line and set its properties afterwards, as we did here.

A circle can be created in a similar way:

import Part

doc = App.activeDocument()

c = Part.Circle()

c.Radius=10.0

f = doc.addObject("Part::Feature", "Circle")

f.Shape = c.toShape()

doc.recompute()

Note again, we used the circle (geometry primitive) to construct a shape out
of it. We can of course still access our construction geometry afterwards, by
doing:

s = f.Shape

e = s.Edges[0]

c = e.Curve

Here we take the shape of our object f, then we take its list of edges. In this
case there will be only one because we made the whole shape out of a
single circle, so we take only the first item of the Edges list, and we takes its
curve. Every Edge has a Curve, which is the geometry primitive it is based
on.

Head to the Topological data scripting (/wiki/index.php?
title=Topological_data_scripting) page if you would like to know more.

Tutorials

◾ Import from STL or OBJ (/wiki/index.php?
title=Import_from_STL_or_OBJ) : How to import STL/OBJ files in FreeCAD

◾ Export to STL or OBJ (/wiki/index.php?title=Export_to_STL_or_OBJ) :
How to export STL/OBJ files from FreeCAD

◾ Whiffle Ball tutorial (/wiki/index.php?title=Whiffle_Ball_tutorial) : How
to use the Part Module

Index (/wiki/index.php?title=Online_Help_Toc)

The Drawing workbench

Page 50 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

The Drawing module allows you to put your 3D work on paper. That is, to put
views of your models in a 2D window and to insert that window in a drawing,
for example a sheet with a border, a title and your logo and finally print that
sheet. The Drawing module is currently under construction and more or less
a technology preview!

GUI Tools
These are tools for creating, configuring and exporting 2D drawing sheets

◾ (/wiki/index.php?title=File:Drawing_New.png) Open scalable vector
graphic (/wiki/index.php?title=Drawing_Open_SVG): Opens a drawing
sheet previously saved as an SVG file

◾ (/wiki/index.php?title=File:Drawing_Landscape_A3.png) New A3
landscape drawing (/wiki/index.php?title=Drawing_Landscape_A3):
Creates a new drawing sheet from FreeCAD's default A3 template

◾ (/wiki/index.php?title=File:Drawing_View.png) Insert a view
(/wiki/index.php?title=Drawing_View): Inserts a view of the selected
object in the active drawing sheet

◾ (/wiki/index.php?title=File:Drawing_Annotation.png) Annotation
(/wiki/index.php?title=Drawing_Annotation): Adds an annotation to the
current drawing sheet

◾ (/wiki/index.php?title=File:Drawing_Clip.png) Clip (/wiki/index.php?
title=Drawing_Clip): Adds a clip group to the current drawing sheet

◾ (/wiki/index.php?title=File:Drawing_Openbrowser.png) Open
Browser (/wiki/index.php?title=Drawing_Openbrowser): Opens a
preview of the current sheet in the browser

◾ (/wiki/index.php?title=File:Drawing_Orthoviews.png) Ortho Views
(/wiki/index.php?title=Drawing_Orthoviews): Automatically creates
orthographic views of an object on the current drawing sheet

◾ (/wiki/index.php?title=File:Drawing_Symbol.png) Symbol
(/wiki/index.php?title=Drawing_Symbol): Adds the contents of a SVG file
as a symbol on the current drawing sheet

◾ (/wiki/index.php?title=File:Drawing_DraftView.png) Draft View
(/wiki/index.php?title=Drawing_DraftView): Inserts a special Draft view
of the selected object in the current drawing sheet

◾ (/wiki/index.php?title=File:Drawing_SpreadsheetView.png)
Spreadsheet View (/wiki/index.php?title=Drawing_SpreadsheetView):
Inserts a view of a selected spreadsheet in the current drawing sheet

◾ (/wiki/index.php?title=File:Drawing_Save.png) Save sheet
(/wiki/index.php?title=Drawing_Save): Saves the current sheet as a SVG
file

◾ Project Shape (/wiki/index.php?title=Drawing_ProjectShape): Creates a
projection of the selected object (Source) in the 3D view.

Note The Draft View (/wiki/index.php?title=Draft_Drawing) tool is used
mainly to place Draft objects on paper. It has a couple of extra capabilities
over the standard Drawing tools, and supports specific objects like Draft
dimensions (/wiki/index.php?title=Draft_Dimension).

Page 51 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

(/wiki/index.php?title=File:Drawing_extraction.png)

In the picture you see the main concepts of the Drawing module. The
document contains a shape object (Schenkel) which we want to extract to a
drawing. Therefore a "Page" is created. A page gets instantiated through a
template, in this case the "A3_Landscape" template. The template is an SVG
document which can hold your usual page frame, your logo or comply to
your presentation standards.

In this page we can insert one or more views. Each view has a position on
the page (Properties X,Y), a scale factor (Property scale) and additional
properties. Every time the page or the view or the referenced object
changes the page gets regenerated and the page display updated.

Scripting
At the moment the end user(GUI) workflow is very limited, so the scripting
API is more interesting. Here follow examples on how to use the scripting
API of the drawing module.

Here a script that can easily fill the Macro_CartoucheFC (/wiki/index.php?
title=Macro_CartoucheFC) leaf FreeCAD A3_Landscape.

Simple example

First of all you need the Part and the Drawing module:

import FreeCAD, Part, Drawing

Create a small sample part

Part.show(Part.makeBox(100,100,100).cut(Part.makeCylinder(80,100)).cut(Part.makeBox(90,40,100)

).cut(Part.makeBox(20,85,100)))

Direct projection. The G0 means hard edge, the G1 is tangent continuous.

Shape = App.ActiveDocument.Shape.Shape

[visibleG0,visibleG1,hiddenG0,hiddenG1] = Drawing.project(Shape)

print "visible edges:", len(visibleG0.Edges)

print "hidden edges:", len(hiddenG0.Edges)

Everything was projected on the Z-plane:

print "Bnd Box shape: X=",Shape.BoundBox.XLength," Y=",Shape.BoundBox.YLength," Z=",Shape.Boun

dBox.ZLength

print "Bnd Box project: X=",visibleG0.BoundBox.XLength," Y=",visibleG0.BoundBox.YLength," Z=",

visibleG0.BoundBox.ZLength

Different projection vector

[visibleG0,visibleG1,hiddenG0,hiddenG1] = Drawing.project(Shape,App.Vector(1,1,1))

Project to SVG

Page 52 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

resultSVG = Drawing.projectToSVG(Shape,App.Vector(1,1,1))

print resultSVG

The parametric way

Create the body

import FreeCAD

import Part

import Drawing

Create three boxes and a cylinder

App.ActiveDocument.addObject("Part::Box","Box")

App.ActiveDocument.Box.Length=100.00

App.ActiveDocument.Box.Width=100.00

App.ActiveDocument.Box.Height=100.00

App.ActiveDocument.addObject("Part::Box","Box1")

App.ActiveDocument.Box1.Length=90.00

App.ActiveDocument.Box1.Width=40.00

App.ActiveDocument.Box1.Height=100.00

App.ActiveDocument.addObject("Part::Box","Box2")

App.ActiveDocument.Box2.Length=20.00

App.ActiveDocument.Box2.Width=85.00

App.ActiveDocument.Box2.Height=100.00

App.ActiveDocument.addObject("Part::Cylinder","Cylinder")

App.ActiveDocument.Cylinder.Radius=80.00

App.ActiveDocument.Cylinder.Height=100.00

App.ActiveDocument.Cylinder.Angle=360.00

Fuse two boxes and the cylinder

App.ActiveDocument.addObject("Part::Fuse","Fusion")

App.ActiveDocument.Fusion.Base = App.ActiveDocument.Cylinder

App.ActiveDocument.Fusion.Tool = App.ActiveDocument.Box1

App.ActiveDocument.addObject("Part::Fuse","Fusion1")

App.ActiveDocument.Fusion1.Base = App.ActiveDocument.Box2

App.ActiveDocument.Fusion1.Tool = App.ActiveDocument.Fusion

Cut the fused shapes from the first box

App.ActiveDocument.addObject("Part::Cut","Shape")

App.ActiveDocument.Shape.Base = App.ActiveDocument.Box

App.ActiveDocument.Shape.Tool = App.ActiveDocument.Fusion1

Hide all the intermediate shapes

Gui.ActiveDocument.Box.Visibility=False

Gui.ActiveDocument.Box1.Visibility=False

Gui.ActiveDocument.Box2.Visibility=False

Gui.ActiveDocument.Cylinder.Visibility=False

Gui.ActiveDocument.Fusion.Visibility=False

Gui.ActiveDocument.Fusion1.Visibility=False

Insert a Page object and assign a template

App.ActiveDocument.addObject('Drawing::FeaturePage','Page')

App.ActiveDocument.Page.Template = App.getResourceDir()+'Mod/Drawing/Templates/A3_Landscape.sv

g'

Create a view on the "Shape" object, define the position and scale and
assign it to a Page

App.ActiveDocument.addObject('Drawing::FeatureViewPart','View')

App.ActiveDocument.View.Source = App.ActiveDocument.Shape

App.ActiveDocument.View.Direction = (0.0,0.0,1.0)

App.ActiveDocument.View.X = 10.0

App.ActiveDocument.View.Y = 10.0

App.ActiveDocument.Page.addObject(App.ActiveDocument.View)

Create a second view on the same object but this time the view will be
rotated by 90 degrees.

App.ActiveDocument.addObject('Drawing::FeatureViewPart','ViewRot')

App.ActiveDocument.ViewRot.Source = App.ActiveDocument.Shape

App.ActiveDocument.ViewRot.Direction = (0.0,0.0,1.0)

App.ActiveDocument.ViewRot.X = 290.0

App.ActiveDocument.ViewRot.Y = 30.0

App.ActiveDocument.ViewRot.Scale = 1.0

App.ActiveDocument.ViewRot.Rotation = 90.0

App.ActiveDocument.Page.addObject(App.ActiveDocument.ViewRot)

Create a third view on the same object but with an isometric view direction.
The hidden lines are activated too.

Page 53 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

App.ActiveDocument.addObject('Drawing::FeatureViewPart','ViewIso')

App.ActiveDocument.ViewIso.Source = App.ActiveDocument.Shape

App.ActiveDocument.ViewIso.Direction = (1.0,1.0,1.0)

App.ActiveDocument.ViewIso.X = 335.0

App.ActiveDocument.ViewIso.Y = 140.0

App.ActiveDocument.ViewIso.ShowHiddenLines = True

App.ActiveDocument.Page.addObject(App.ActiveDocument.ViewIso)

Change something and update. The update process changes the view and
the page.

App.ActiveDocument.View.X = 30.0

App.ActiveDocument.View.Y = 30.0

App.ActiveDocument.View.Scale = 1.5

App.ActiveDocument.recompute()

Accessing the bits and pieces

Get the SVG fragment of a single view

ViewSVG = App.ActiveDocument.View.ViewResult

print ViewSVG

Get the whole result page (it's a file in the document's temporary directory,
only read permission)

print "Resulting SVG document: ",App.ActiveDocument.Page.PageResult

file = open(App.ActiveDocument.Page.PageResult,"r")

print "Result page is ",len(file.readlines())," lines long"

Important: free the file!

del file

Insert a view with your own content:

App.ActiveDocument.addObject('Drawing::FeatureView','ViewSelf')

App.ActiveDocument.ViewSelf.ViewResult = """<g id="ViewSelf"

 stroke="rgb(0, 0, 0)"

 stroke-width="0.35"

 stroke-linecap="butt"

 stroke-linejoin="miter"

 transform="translate(30,30)"

 fill="#00cc00"

 >

 <ellipse cx="40" cy="40" rx="30" ry="15"/>

 </g>"""

App.ActiveDocument.Page.addObject(App.ActiveDocument.ViewSelf)

App.ActiveDocument.recompute()

del ViewSVG

That leads to the following result:

(/wiki/index.php?title=File:DrawingScriptResult.jpg)

Page 54 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

General Dimensioning and Tolerancing

Drawing dimensions an tolerances are still under development but you can
get some basic functionality with a bit of work.

First you need to get the gdtsvg python module from here (WARNING: This
could be broken at any time!):

https://github.com/jcc242/FreeCAD (https://github.com/jcc242/FreeCAD)

To get a feature control frame, try out the following:

import gdtsvg as g # Import the module, I like to give it an easy handle

ourFrame = g.ControlFrame("0","0", g.Perpendicularity(), ".5", g.Diameter(), g.ModifyingSymbol

s("M"), "A",

 g.ModifyingSymbols("F"), "B", g.ModifyingSymbols("L"), "C", g.ModifyingSymbols("I")

)

Here is a good breakdown of the contents of a feature control frame:
http://www.cadblog.net/adding-geometric-tolerances.htm
(http://www.cadblog.net/adding-geometric-tolerances.htm)

The parameters to pass to control frame are:

1. X-coordinate in SVG-coordinate system (type string)
2. Y-coordinate in SVG-coordinate system (type string)
3. The desired geometric characteristic symbol (tuple, svg string

as first, width of symbol as second, height of symbol as third)
4. The tolerance (type string)
5. (optional) The diameter symbol (tuple, svg string as first, width

of symbol as second, height of symbol as third)
6. (optional) The condition modifying material (tuple, svg string

as first, width of symbol as second, height of symbol as third)
7. (optional) The first datum (type string)
8. (optional) The first datum's modifying condition (tuple, svg

string as first, width of symbol as second, height of symbol as
third)

9. (optional) The second datum (type string)
10. (optional) The second datum's modifying condition (tuple, svg

string as first, width of symbol as second, height of symbol as
third)

11. (optional) The third datum (type string)
12. (optional) The third datum's material condition (tuple, svg

string as first, width of symbol as second, height of symbol as
third)

The ControlFrame function returns a type containing (svg string, overall
width of control frame, overall height of control frame)

To get a dimension, try out the following:

import gdtsvg

ourDimension = linearDimension(point1, point2, textpoint, dimensiontext, linestyle=getStyle("v

isible"),

 arrowstyle=getStyle("filled"), textstyle=getStyle("text")

Inputs for linear dimension are:

1. point1, an (x,y) tuple with svg-coordinates, this is one of the
points you would like to dimension between

2. point2, an (x,y) tuple with svg-coordinates, this is the second
point you would like to dimension between

Page 55 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Part Module (/wiki/index.php?title=Part_Module)
next: Raytracing Module > (/wiki/index.php?
title=Raytracing_Module)

3. textpoint, an (x,y) tuple of svg-coordinates, this is where the
text of your dimension will be

4. dimensiontext, a string containing the text you want the
dimension to say

5. linestyle, a string containing svg (i.e. css) styles, using the
getStyle function to retrieve a preset string, for styling the
how the lines look

6. arrowstyle, a string containing svg (i.e. css) styles, using the
getStyle function to retrieve a preset string, for styling how
the arrows look

7. textstyle, a string containing svg (i.e. css) styles, using the
getStyle function to retrieve a preset string, for styling how
the text looks

With those two, you can proceed as above for displaying them on the
drawing page. This module is very buggy and can be broken at any given
moment, bug reports are welcome on the github page for now, or contact
jcc242 on the forums if you post a bug somewhere else.

Templates
FreeCAD comes bundled with a set of default templates, but you can find
more on the Drawing templates (/wiki/index.php?title=Drawing_templates)
page.

Extending the Drawing Module
Some notes on the programming side of the drawing module will be added
to the Drawing Documentation (/wiki/index.php?
title=Drawing_Documentation) page. This is to help quickly understand how
the drawing module works, enabling programmers to rapidly start
programming for it.

Tutorials

◾ Drawing tutorial (/wiki/index.php?title=Drawing_tutorial)

External links

◾ Intro to mechanical drawing on Youtube - by Normal Universe
(https://www.youtube.com/watch?v=1Hm5Zyjmjac)

Index

(/wiki/index.php?title=Online_Help_Toc)

The Raytracing workbench
The Raytracing module is used to generate photorealistic images of your
models by rendering them with an external renderer. The Raytracing
workbench works with templates (/wiki/index.php?
title=Raytracing_Module#Templates), the same way as the Drawing
workbench (/wiki/index.php?title=Drawing_Module), by allowing you to

Page 56 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

create a Raytracing project in which you add views of your objects. The
project can then be exported to a ready-to-render file, or be rendered
directly.

(/wiki/index.php?title=File:Raytracing_example.jpg)

Currenly, two renderers are supported: povray
(http://en.wikipedia.org/wiki/POV-Ray) and luxrender
(http://en.wikipedia.org/wiki/LuxRender). To be able to render directly
from FreeCAD, at least one of those renderers must be installed on your
system, and its path must be configured in the FreeCAD Raytracing
preferences. Without any renderer installed, though, you are still able to
export a scene file that can be used in any of those renderers later, or on
another machine.

The raytracing workbench works with templates (/wiki/index.php?
title=Raytracing_Module#Templates), which are complete scene files for the
given external renderer, including lights and possibly additional geometry
such as ground planes. These scene files contain placeholders, where
FreeCAD will insert the position of the camera, and geometry and materials
information of each of the objects you insert in the project. That modified
scene file is what is then exported to the external renderer.

Tools

Raytracing project tools

These are the main tools for exporting your 3D work to external renderers

◾ (/wiki/index.php?title=File:Raytracing_New.png) New PovRay
project (/wiki/index.php?title=Raytracing_New): Insert new PovRay
project in the document

◾ (/wiki/index.php?title=File:Raytracing_Lux.png) New LuxRender
project (/wiki/index.php?title=Raytracing_Lux): Insert new LuxRender
project in the document

◾ (/wiki/index.php?title=File:Raytracing_InsertPart.png) Insert part
(/wiki/index.php?title=Raytracing_InsertPart): Insert a view of a Part in
a raytracing project

◾ (/wiki/index.php?title=File:Raytracing_ResetCamera.png) Reset
camera (/wiki/index.php?title=Raytracing_ResetCamera): Matches the
camera position of a raytracing project to the current view

◾ (/wiki/index.php?title=File:Raytracing_ExportProject.png) Export
project (/wiki/index.php?title=Raytracing_ExportProject): Exports a
raytracing project to a scene file for rendering in an external renderer

◾ (/wiki/index.php?title=File:Raytracing_Render.png) Render
(/wiki/index.php?title=Raytracing_Render): Renders a raytracing project
with an external renderer

Page 57 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Utilities

These are helper tools to perform specific tasks manually

◾ (/wiki/index.php?title=File:Raytracing_Export.png) Export view to
povray (/wiki/index.php?title=Raytracing_Export): Write the active 3D
view with camera and all its content to a povray file

◾ (/wiki/index.php?title=File:Raytracing_Camera.png) Export camera
to povray (/wiki/index.php?title=Raytracing_Camera): Export the
camera position of the active 3D view in POV-Ray format to a file

◾ (/wiki/index.php?title=File:Raytracing_Part.png) Export part to
povray (/wiki/index.php?title=Raytracing_Part): Write the selected Part
(object) as a povray file

Typical workflow

1. Create or open a FreeCAD project, add some Part-based
(/wiki/index.php?title=Part_Module) objects (meshes are
currently not supported)

2. Create a Raytracing project (luxrender or povray)
3. Select the objects you wish to add to the raytracing project

and add them to the project with the "Insert Part" tool
4. Export or render directly

Creating a povray file manually
The utility tools described above allow you to export the current 3D view
and all of its content to a Povray (http://www.povray.org/) file. First, you
must load or create your CAD data and position the 3D View orientation as
you wish. Then choose "Utilities->Export View..." from the raytracing menu.

(/wiki/index.php?title=File:FreeCAD_Raytracing.jpg)
You will be asked for a location to save the resulting *.pov file. After that
you can open it in Povray (http://www.povray.org/) and render:

Page 58 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

(/wiki/index.php?title=File:Povray.jpg)
As usual in a renderer you can make big and nice pictures:

(/wiki/index.php?title=File:Scharniergreifer_render.jpg)

Scripting

Outputting render files

The Raytracing and RaytracingGui modules provide several methods to write
scene contents as povray or luxrender data. The most useful are
Raytracing.getPartAsPovray() and Raytracing.getPartAsLux() to render a
FreeCAD Part object into a povray or luxrender definition, and

Page 59 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

RaytracingGui.povViewCamera() and RaytracinGui.luxViewCamera() to get
the current point of view of the FreeCAD 3D window into povray or luxrender
format.

Here is how to write a povray file from python, assuming your document
contains a "Box" object:

import Raytracing,RaytracingGui

OutFile = open('C:/Documents and Settings/jriegel/Desktop/test.pov','w')

OutFile.write(open(App.getResourceDir()+'Mod/Raytracing/Templates/ProjectStd.pov').read())

OutFile.write(RaytracingGui.povViewCamera())

OutFile.write(Raytracing.getPartAsPovray('Box',App.activeDocument().Box.Shape,0.800000,0.80000

0,0.800000))

OutFile.close()

del OutFile

And the same for luxrender:

import Raytracing,RaytracingGui

OutFile = open('C:/Documents and Settings/jriegel/Desktop/test.lxs','w')

OutFile.write(open(App.getResourceDir()+'Mod/Raytracing/Templates/LuxClassic.lxs').read())

OutFile.write(RaytracingGui.luxViewCamera())

OutFile.write(Raytracing.getPartAsLux('Box',App.activeDocument().Box.Shape,0.800000,0.800000,0

.800000))

OutFile.close()

del OutFile

Creating a custom render object

Apart from standard povray and luxrender view objects that provide a view
of an existing Part object, and that can be inserted in povray and luxrender
projects respectively, a third object exist, called RaySegment, that can be
inserted either in povray or luxrender projects. That RaySegment object is
not linked to any of the FreeCAD objects, and can contain custom povray or
luxrender code, that you might wish to insert into your raytracing project.
You can also use it, for example, to output your FreeCAD objects a certain
way, if you are not happy with the standard way. You can create and use it
like this from the python console:

myRaytracingProject = FreeCAD.ActiveDocument.PovProject

myCustomRenderObject = FreeCAD.ActiveDocument.addObject("Raytracing::RaySegment","myRenderObje

ct")

myRaytracingProject.addObject(myCustomRenderObject)

myCustomRenderObject.Result = "// Hello from python!"

Links

POVRay

◾ http://www.spiritone.com/~english/cyclopedia/
(http://www.spiritone.com/~english/cyclopedia/)

◾ http://www.povray.org/ (http://www.povray.org/)
◾ http://en.wikipedia.org/wiki/POV-Ray

(http://en.wikipedia.org/wiki/POV-Ray)

Luxrender

◾ http://www.luxrender.net/ (http://www.luxrender.net/)

Future possible renderers to implement

◾ http://www.yafaray.org/ (http://www.yafaray.org/)
◾ http://www.mitsuba-renderer.org/ (http://www.mitsuba-renderer.org/)
◾ http://www.kerkythea.net/ (http://www.kerkythea.net/)
◾ http://www.artofillusion.org/ (http://www.artofillusion.org/)

Page 60 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Currently there is a new Renderer Workbench in development to support
multiple back-ends such as Lux Renderer and Yafaray. Information for using
the development version can be viewed at Render_project
(/wiki/index.php?title=Render_project)

For Development status of the Render Module look here Raytracing_project
(/wiki/index.php?title=Raytracing_project)

Templates
FreeCAD comes with a couple of default templates for povray and luxrender,
but you can easily create your own. All you need to do is to create a scene
file for the given renderer, then edit it manually with a text editor to insert
special tags that FreeCAD will recognize and where it will insert its contents
(camera and objects data)

Povray

Povray scene files (with extension .pov) can be created manually with a text
editor (povray is made primarily to be used as a scripting language), but
also with a wide range of 3D applications, such as blender
(http://www.blender.org). On the povray website (http://www.povray.org/)
you can find further information and a list of applications able to
produce .pov files.

When you have a .pov file ready, you need to open it with a text editor, and
do two operations:

1. Strip out the camera information, because FreeCAD will place
its own camera data. To do so, locate a text block like this:
camera { ... }, which describes the camera parameters,
and delete it (or put "//" in front of each line to comment
them out).

2. Insert the following line somewhere: //RaytracingContent.
This is where FreeCAD will insert its contents (camera and
objects data). You can, for example, put this line at the very
end of the file.

Note that FreeCAD will also add some declarations, that you can use in your
template, after the //RaytracingContent tag. These are:

◾ cam_location: the location of the camera
◾ cam_look_at: the location of the target point of the camera
◾ cam_sky: the up vector of the camera.
◾ cam_angle: the angle of the camera

If you want, for example, to place a lamp above the camera, you can use
this:

light_source {

 cam_location + cam_angle * 100

 color rgb <10, 10, 10>

}

Luxrender

Luxrender scene files (with extension.lxs) can either be single files, or a
master .lxs file that includes world definition (.lxw), material definition (.lxm)
and geometry definition (.lxo) files. You can work with both styles, but it is
also easy to transform a group of 4 files in a single .lxs file, by copying the
contents of each .lxw, .lxm and .lxo file and pasting it at the point where that
file is inserted in the master .lxs file.

Page 61 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Luxrender scene files are hard to produce by hand, but are easy to produce
with many 3D applications such as blender (http://www.blender.org). On the
luxrender website (http://www.luxrender.net), you'll find more information
and plugins for the main 3D applications out there.

If you will work with separated .lxw, .lxm and .lxo files, beware that the
final .lxs exported by FreeCAD might be at a different location than the
template file, and therefore these files might not be found by Luxrender at
render time. In this case you should or copy these files to the location of
your final file, or edit their paths in the exported .lxs file.

If you are exporting a scene file from blender, and wish to merge everything
into one single file, you will need to perform one step before exporting: By
default, the luxrender exporter in blender exports all mesh geometry as
separate .ply files, instead of placing the mesh geometry directly inside
the .lxo file. To change that behaviour, you need to select each of your
meshes in blender, go to the "mesh" tab and set the option "export as" to
"luxrender mesh" for each one of them.

After you have your scene file ready, to turn it into a FreeCAD template, you
need to perform the following steps:

1. Locate the camera position, a single line that begins with
LookAt, and delete it (or place a "#" at the beginning of the
line to comment it out)

2. At that place, insert the following line: #RaytracingCamera
3. At a desired point, for example just after the end of the

materials definition, before the geometry information, or at
the very end, just before the final WorldEnd line, insert the
following line: #RaytracingContent. That is where FreeCAD
will insert its own objects.

Note that in luxrender, the objects stored in a scene file can define
transformation matrixes, that perform location, rotation or scaling
operations. These matrixes can stack and affect everything that come after
them, so, by placing your #RaytracingContent tag at the end of the file,
you might see your FreeCAD objects affected by a transformation matrix
placed earlier in the template. To make sure that this doesn't happen, place
your #RaytracingContent tag before any other geometry object present
in the template. FreeCAD itself won't define any of those transformation
matrixes.

Exporting to Kerkythea
Although direct export to the Kerkythea XML-File-Format is not supported
yet, you can export your Objects as Mesh-Files (.obj) and then import them
in Kerkythea.

◾ if using Kerkythea for Linux, remember to install the WINE-Package
(needed by Kerkythea for Linux to run)

◾ you can convert your models with the help of the mesh workbench to
meshes and then export these meshes as .obj-files

◾ If your mesh-export resulted in errors (flip of normals, holes ...) you may
try your luck with netfabb studio basic
(http://www.netfabb.com/downloadcenter.php?basic=1)

Free for personal use, available for Windows, Linux and Mac OSX.
It has standard repair tools which will repair you model in most
cases.

◾ another good program for mesh analysing/repairing is Meshlab
(http://sourceforge.net/projects/meshlab/)

Page 62 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Drawing Module (/wiki/index.php?
title=Drawing_Module)

next: Image Module > (/wiki/index.php?title=Image_Module)

Open Source, available for Windows, Linux and Mac OSX.
It has standard repair tools which will repair you model in most
cases (fill holes, re-orient normals, etc.)

◾ you can use "make compound" and then "make single copy" or you can
fuse solids to group them before converting to meshes

◾ remember to set in Kerkythea an import-factor of 0.001 for obj-
modeler, since Kerkythea expects the obj-file to be in m (but standard
units-scheme in FreeCAD is mm)

Within WIndows 7 64-bit Kerkythea does not seem to be able to
save these settings.
So remember to do that each time you start Kerkythea

◾ if importing multiple objects in Kerkythea you can use the "File >
Merge" command in Kerkythea

Links

◾ Render project (/wiki/index.php?title=Render_project)
◾ Raytracing tutorial (/wiki/index.php?title=Raytracing_tutorial)

Index
(/wiki/index.php?title=Online_Help_Toc)

The Image workbench
The image module manages different types of bitmap images
(http://en.wikipedia.org/wiki/Raster_graphics), and lets you open them in
FreeCAD.

Currently, the modules lets you open .bmp, .jpg, .png and .xpm file formats
in a separate viewer window.

The image workbenches also allows you to import an image on a plane in
the 3D-space of FreeCAD. This function is available via the second button of
the image workbench. (/wiki/index.php?title=File:Image_Import.png).
The imported image can be attached like a sketch to one of the main three
planes (XY/XZ/YZ) with positive or negativ offset.
This function is only available if you have opened a FreeCAD document.

The image can be moved in 3D-space by editing the placement in the
Property editor (/wiki/index.php?title=Property_editor).
The major use is tracing over the image, in order to generate a new part at
using the image as template.

The image is imported with 1 pixel = 1mm. Therefore it is recommended to
have the imported image in a reasonable resolution. The image can be
scaled by editing the "XSize" and "YSize" values in the Property editor
(/wiki/index.php?title=Property_editor). The image can be also moved by
editing the X/Y/Z-values in the Placement-Tab. The image can also be
rotated around any axis by using the placement-dialogue.

Tip:
Tracing with sketcher elements over an image works best if the image has a
small (negative) offset to the sketch plane.
You can set an offset of -0,1 mm at import or later by editing the placement
of the image.

Page 63 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Raytracing Module (/wiki/index.php?
title=Raytracing_Module)

next: Draft Module > (/wiki/index.php?title=Draft_Module)

Tools

 (/wiki/index.php?title=File:Image_Import.png) Image Import
(/wiki/index.php?title=Image_Import)

Index
(/wiki/index.php?title=Online_Help_Toc)

The Draft workbench
The Draft workbench allows to quickly draw simple 2D objects in the current
document, and offers several tools to modify them afterwards. Some of
these tools also work on all other FreeCAD objects, not only those created
with the Draft workbench. It also provides a complete snapping system, and
several utilities to manage objects and settings.

Drawing objects

These are tools for creating objects.

◾ (/wiki/index.php?title=File:Draft_Line.png) Line (/wiki/index.php?
title=Draft_Line): Draws a line segment between 2 points

◾ (/wiki/index.php?title=File:Draft_Wire.png) Wire (/wiki/index.php?
title=Draft_Wire): Draws a line made of multiple line segments (polyline)

◾ (/wiki/index.php?title=File:Draft_Circle.png) Circle
(/wiki/index.php?title=Draft_Circle): Draws a circle from center and
radius

◾ (/wiki/index.php?title=File:Draft_Arc.png) Arc (/wiki/index.php?
title=Draft_Arc): Draws an arc segment from center, radius, start angle
and end angle

◾ (/wiki/index.php?title=File:Draft_Ellipse.png) Ellipse
(/wiki/index.php?title=Draft_Ellipse): Draws an ellipse from two corner
points

◾ (/wiki/index.php?title=File:Draft_Polygon.png) Polygon
(/wiki/index.php?title=Draft_Polygon): Draws a regular polygon from a
center and a radius

◾ (/wiki/index.php?title=File:Draft_Rectangle.png) Rectangle
(/wiki/index.php?title=Draft_Rectangle): Draws a rectangle from 2
opposite points

◾ (/wiki/index.php?title=File:Draft_Text.png) Text (/wiki/index.php?
title=Draft_Text): Draws a multi-line text annotation

◾ (/wiki/index.php?title=File:Draft_Dimension.png) Dimension
(/wiki/index.php?title=Draft_Dimension): Draws a dimension annotation

◾ (/wiki/index.php?title=File:Draft_BSpline.png) BSpline
(/wiki/index.php?title=Draft_BSpline): Draws a B-Spline from a series of
points

◾ (/wiki/index.php?title=File:Draft_Point.png) Point (/wiki/index.php?
title=Draft_Point): Inserts a point object

◾ (/wiki/index.php?title=File:Draft_ShapeString.png) ShapeString
(/wiki/index.php?title=Draft_ShapeString): The ShapeString tool inserts
a compound shape representing a text string at a given point in the
current document

Page 64 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

◾ (/wiki/index.php?title=File:Draft_Facebinder.png) Facebinder
(/wiki/index.php?title=Draft_Facebinder): Creates a new object from
selected faces on existing objects

◾ (/wiki/index.php?title=File:Draft_BezCurve.png) Bezier Curve
(/wiki/index.php?title=Draft_BezCurve): Draws a Bezier curve from a
series of points

Modifying objects

These are tools for modifying existing objects. They work on selected
objects, but if no object is selected, you will be invited to select one.

◾ (/wiki/index.php?title=File:Draft_Move.png) Move (/wiki/index.php?
title=Draft_Move): Moves object(s) from one location to another

◾ (/wiki/index.php?title=File:Draft_Rotate.png) Rotate
(/wiki/index.php?title=Draft_Rotate): Rotates object(s) from a start
angle to an end angle

◾ (/wiki/index.php?title=File:Draft_Offset.png) Offset
(/wiki/index.php?title=Draft_Offset): Moves segments of an object
about a certain distance

◾ (/wiki/index.php?title=File:Draft_Trimex.png) Trim/Extend (Trimex)
(/wiki/index.php?title=Draft_Trimex): Trims or extends an object

◾ (/wiki/index.php?title=File:Draft_Upgrade.png) Upgrade
(/wiki/index.php?title=Draft_Upgrade): Joins objects into a higher-level
object

◾ (/wiki/index.php?title=File:Draft_Downgrade.png) Downgrade
(/wiki/index.php?title=Draft_Downgrade): Explodes objects into lower-
level objects

◾ (/wiki/index.php?title=File:Draft_Scale.png) Scale (/wiki/index.php?
title=Draft_Scale): Scales selected object(s) around a base point

◾ (/wiki/index.php?title=File:Draft_PutOnSheet.png) Drawing
(/wiki/index.php?title=Draft_Drawing): Writes selected objects to a
Drawing sheet (/wiki/index.php?title=Drawing_Module)

◾ (/wiki/index.php?title=File:Draft_Edit.png) Edit (/wiki/index.php?
title=Draft_Edit): Edits a selected object

◾ (/wiki/index.php?title=File:Draft_WireToBSpline.png) Wire to
BSpline (/wiki/index.php?title=Draft_WireToBSpline): Converts a wire to
a BSpline and vice-versa

◾ (/wiki/index.php?title=File:Draft_AddPoint.png) Add point
(/wiki/index.php?title=Draft_AddPoint): Adds a point to a wire or
BSpline

◾ (/wiki/index.php?title=File:Draft_DelPoint.png) Delete point
(/wiki/index.php?title=Draft_DelPoint): Deletes a point from a wire or
BSpline

◾ (/wiki/index.php?title=File:Draft_Shape2DView.png) Shape 2D View
(/wiki/index.php?title=Draft_Shape2DView): Creates a 2D object which is
a flattened 2D view of another 3D object

◾ (/wiki/index.php?title=File:Draft_Draft2Sketch.png) Draft to Sketch
(/wiki/index.php?title=Draft_Draft2Sketch): Converts a Draft object to
Sketch and vice-versa

◾ (/wiki/index.php?title=File:Draft_Array.png) Array (/wiki/index.php?
title=Draft_Array): Creates a polar or rectangular array from selected
objects

Page 65 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

◾ (/wiki/index.php?title=File:Draft_PathArray.png) Path Array
(/wiki/index.php?title=Draft_PathArray): Creates an array of objects by
placing the copies along a path

◾ (/wiki/index.php?title=File:Draft_Clone.png) Clone
(/wiki/index.php?title=Draft_Clone): Clones the selected objects

◾ (/wiki/index.php?title=File:Draft_Mirror.png) Mirror
(/wiki/index.php?title=Draft_Mirror): Mirrors the selected objects

Utility tools

Additional tools available via right-click context menu, depending on the
selected objects.

◾ (/wiki/index.php?title=File:Draft_SelectPlane.png) Set working
plane (/wiki/index.php?title=Draft_SelectPlane): Sets a working plane
from a standard view or a selected face

◾ (/wiki/index.php?title=File:Draft_FinishLine.png) Finish line
(/wiki/index.php?title=Draft_FinishLine): Ends the drawing of the
current wire or bspline, without closing it

◾ (/wiki/index.php?title=File:Draft_CloseLine.png) Close line
(/wiki/index.php?title=Draft_CloseLine): Ends the drawing of the current
wire or bspline, and closes it

◾ (/wiki/index.php?title=File:Draft_UndoLine.png) Undo line
(/wiki/index.php?title=Draft_UndoLine): Undoes the last segment of a
line

◾ (/wiki/index.php?title=File:Draft_ToggleConstructionMode.png)
Toggle construction mode (/wiki/index.php?
title=Draft_ToggleConstructionMode): Toggles the Draft construction
mode on/off

◾ (/wiki/index.php?title=File:Draft_ToggleContinueMode.png) Toggle
continue mode (/wiki/index.php?title=Draft_ToggleContinueMode):
Toggles the Draft continue mode on/off

◾ (/wiki/index.php?title=File:Draft_ApplyStyle.png) Apply style
(/wiki/index.php?title=Draft_Apply): Applies the current style and color
to selected objects

◾ (/wiki/index.php?title=File:Draft_ToggleDisplayMode.png) Toggle
display mode (/wiki/index.php?title=Draft_ToggleDisplayMode):
Switches the display mode of selected objects between "flat lines" and
"wireframe"

◾ (/wiki/index.php?title=File:Draft_AddToGroup.png) Add to group
(/wiki/index.php?title=Draft_AddToGroup): Quickly adds selected
objects to an existing group

◾ (/wiki/index.php?title=File:Draft_SelectGroup.png) Select group
contents (/wiki/index.php?title=Draft_SelectGroup): Selects the
contents of a selected group

◾ (/wiki/index.php?title=File:Draft_ToggleSnap.png) Toggle snap
(/wiki/index.php?title=Draft_ToggleSnap): Toggles object snapping
(/wiki/index.php?title=Draft_Snap) on/off

◾ (/wiki/index.php?title=File:Draft_ToggleGrid.png) Toggle grid
(/wiki/index.php?title=Draft_ToggleGrid): Toggles the grid on/off

◾ (/wiki/index.php?title=File:Draft_ShowSnapBar.png) Show snap bar
(/wiki/index.php?title=Draft_ShowSnapBar): Shows/hides the snapping
(/wiki/index.php?title=Draft_Snap) toolbar

Page 66 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

◾ (/wiki/index.php?title=File:Draft_Heal.png) Heal (/wiki/index.php?
title=Draft_Heal): Heals problematic Draft objects found in very old files

◾ (/wiki/index.php?title=File:Draft_FlipDimension.png) Flip Dimension
(/wiki/index.php?title=Draft_FlipDimension): Flips the orientation of the
text of a dimension (/wiki/index.php?title=Draft_Dimension)

◾ (/wiki/index.php?title=File:Draft_VisGroup.png) VisGroup
(/wiki/index.php?title=Draft_VisGroup): Creates a VisGroup in the
current document

File formats

The Draft module provides FreeCAD with importers and exporters for the
following file formats:

◾ Autodesk .DXF (/wiki/index.php?title=Draft_DXF): Imports and exports
Drawing Exchange Format (http://en.wikipedia.org/wiki/AutoCAD_DXF)
files created with 2D CAD applications

◾ SVG (as geometry) (/wiki/index.php?title=Draft_SVG): Imports and
exports Scalable Vector Graphics
(http://en.wikipedia.org/wiki/Scalable_Vector_Graphics) files created
with vector drawing applications

◾ Open Cad format .OCA (/wiki/index.php?title=Draft_OCA): Imports and
exports OCA/GCAD files, a potentially new open CAD file format
(http://groups.google.com/group/open_cad_format)

◾ Airfoil Data Format .DAT (/wiki/index.php?title=Draft_DAT): Imports DAT
files describing Airfoil profiles
(http://www.ae.illinois.edu/m-selig/ads/coord_database.html)

◾ Autodesk .DWG (/wiki/index.php?title=Draft_DXF): Import and exports
DWG files via the DXF importer, when the Teigha Converter
(/wiki/index.php?title=Extra_python_modules) utility is installed.

◾ FreeCAD and DWG Import (/wiki/index.php?
title=FreeCAD_and_DWG_Import): Import and exports DWG files

◾ FreeCAD and DXF Import (/wiki/index.php?
title=FreeCAD_and_DXF_Import): Import and exports DXf files

Additional features

◾ Snapping (/wiki/index.php?title=Draft_Snap): Allows to place new
points on special places on existing objects

◾ Constraining (/wiki/index.php?title=Draft_Constrain): Allows to place
new points horizontally or vertically in relation to previous points

◾ Working with manual coordinates (/wiki/index.php?
title=Draft_Coordinates): Allows to enter manual coordinates instead of
clicking on screen

◾ Working plane (/wiki/index.php?title=Draft_SelectPlane): Allows you to
define a plane in the 3D space, where next operations will take place

Preference settings

◾ The Draft module has its preferences (/wiki/index.php?
title=Draft_Preferences) screen

Scripting

The Draft module features a complete Draft API
(http://www.freecadweb.org/api/Draft.html) so you can use its functions in
scripts and macros

Page 67 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Image Module (/wiki/index.php?title=Image_Module)
next: Arch Module > (/wiki/index.php?title=Arch_Module)

Tutorials

◾ Draft tutorial (/wiki/index.php?title=Draft_tutorial)
◾ Draft tutorial Outdated (/wiki/index.php?title=Draft_tutorial_Outdated)
◾ Draft ShapeString tutorial (/wiki/index.php?

title=Draft_ShapeString_tutorial)

Index
(/wiki/index.php?title=Online_Help_Toc)

Scripting and Macros
Macros
Macros are a convenient way to create complex actions in FreeCAD. You
simply record actions as you do them, then save that under a name, and
replay them whenever you want. Since macros are in reality a list of python
commands, you can also edit them, and create very complex scripts.

How it works

If you enable console output (Menu Edit -> Preferences -> General -> Macros
-> Show scripts commands in python console), you will see that in FreeCAD,
every action you do, such as pressing a button, outputs a python command.
Thos commands are what can be recorded in a macro. The main tool for
making macros is the macros toolbar: (/wiki/index.php?
title=File:Macros_toolbar.jpg). On it you have 4 buttons: Record, stop
recording, edit and play the current macro.

It is very simple to use: Press the record button, you will be asked to give a
name to your macro, then perform some actions. When you are done, click
the stop recording button, and your actions will be saved. You can now
access the macro dialog with the edit button:

 (/wiki/index.php?

title=File:Macros.jpg)

There you can manage your macros, delete, edit or create new ones from
scratch. If you edit a macro, it will be opened in an editor window where you
can make changes to its code.

Example

Press the record button, give a name, let's say "cylinder 10x10", then, in the
Part Workbench (/wiki/index.php?title=Part_Workbench), create a cylinder
with radius = 10 and height = 10. Then, press the "stop recording" button. In
the edit macros dialog, you can see the python code that has been
recorded, and, if you want, make alterations to it. To execute your macro,

Page 68 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Standard Menu (/wiki/index.php?
title=Standard_Menu)
next: Introduction to Python > (/wiki/index.php?
title=Introduction_to_Python)

simply press the execute button on the toolbar while your macro is in the
editor. You macro is always saved to disk, so any change you make, or any
new macro you create, will always be available next time you start FreeCAD.

Customizing

Of course it is not practical to load a macro in the editor in order to use it.
FreeCAD provides much better ways to use your macro, such as assigning a
keyboard shortcut to it or putting an entry in the menu. Once your macro is
created, all this can be done via the Tools -> Customize menu:

 (/wiki/index.php?

title=File:Macros_config.jpg)

Customize ToolsBar (/wiki/index.php?title=Customize_ToolsBar) This way
you can make your macro become a real tool, just like any standard FreeCAD
tool. This, added to the power of python scripting within FreeCAD, makes it
possible to easily add your own tools to the interface. Read on to the
Scripting (/wiki/index.php?title=Scripting) page if you want to know more
about python scripting...

Creating macros without recording

How to install macros (/wiki/index.php?title=How_to_install_macros) You
can also directly copy/paste python code into a macro, without recording
GUI action. Simply create a new macro, edit it, and paste your code. You can
then save your macro the same way as you save a FreeCAD document. Next
time you start FreeCAD, the macro will appear under the "Installed Macros"
item of the Macro menu.

Macros repository

Visit the Macros recipes (/wiki/index.php?title=Macros_recipes) page to pick
some useful macros to add to your FreeCAD installation.

Links

Installing more workbenches (/wiki/index.php?
title=Installing_more_workbenches)

Index (/wiki/index.php?title=Online_Help_Toc)

Introduction to Python
<translate> This is a short tutorial made for who is totally new to Python.
Python (http://en.wikipedia.org/wiki/Python_%28programming_language%
29) is an open-source, multiplatform programming language
(http://en.wikipedia.org/wiki/Programming_language). Python has several
features that make it very different than other common programming
languages, and very accessible to new users like yourself:

◾ It has been designed specially to be easy to read by human beings, and
so it is very easy to learn and understand.

Page 69 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

◾ It is interpreted, that is, unlike compiled languages like C, your program
doesn't need to be compiled before it is executed. The code you write
can be immediately executed, line by line if you want so. This makes it
extremely easy to learn and to find errors in your code, because you go
slowly, step-by-step.

◾ It can be embedded in other programs to be used as scripting language.
FreeCAD has an embedded Python interpreter, so you can write Python
code in FreeCAD, that will manipulate parts of FreeCAD, for example to
create geometry. This is extremely powerful, because instead of just
clicking a button labeled "create sphere", that a programmer has placed
there for you, you have the freedom to create easily your own tool to
create exactly the geometry you want.

◾ It is extensible, you can easily plug new modules in your Python
installation and extend its functionality. For example, you have modules
that allow Python to read and write jpg images, to communicate with
twitter, to schedule tasks to be performed by your operating system,
etc.

So, hands on! Be aware that what will come next is a very simple
introduction, by no means a complete tutorial. But my hope is that after
that you'll get enough basics to explore deeper into the FreeCAD
mechanisms.

The interpreter
Usually, when writing computer programs, you simply open a text editor or
your special programming environment which is in most case a text editor
with several tools around it, write your program, then compile it and
execute it. Most of the time you made errors while writing, so your program
won't work, and you will get an error message telling you what went wrong.
Then you go back to your text editor, correct the mistakes, run again, and so
on until your program works fine.

That whole process, in Python, can be done transparently inside the Python
interpreter. The interpreter is a Python window with a command prompt,
where you can simply type Python code. If you install Python on your
computer (download it from the Python website (http://www.python.org) if
you are on Windows or Mac, install it from your package repository if you
are on GNU/Linux), you will have a Python interpreter in your start menu.
But FreeCAD also has a Python interpreter in its bottom part:

(/wiki/index.php?title=File:Screenshot_pythoninterpreter.jpg)

(If you don't have it, click on View ? Views ? Python console.)

The interpreter shows the Python version, then a >>> symbol, which is the
command prompt, that is, where you enter Python code. Writing code in the
interpreter is simple: one line is one instruction. When you press Enter, your
line of code will be executed (after being instantly and invisibly compiled).
For example, try writing this:< /translate>

print "hello"

Page 70 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

<translate> print is a special Python keyword that means, obviously, to
print something on the screen. When you press Enter, the operation is
executed, and the message "hello" is printed. If you make an error, for
example let's write:< /translate>

print hello

<translate> Python will tell us that it doesn't know what hello is. The "
characters specify that the content is a string, which is simply, in
programming jargon, a piece of text. Without the ", the print command
believed hello was not a piece of text but a special Python keyword. The
important thing is, you immediately get notified that you made an error. By
pressing the up arrow (or, in the FreeCAD interpreter, CTRL+up arrow), you
can go back to the last command you wrote and correct it.

The Python interpreter also has a built-in help system. Try
typing:< /translate>

help

<translate> or, for example, let's say we don't understand what went wrong
with our print hello command above, we want specific information about
the "print" command:< /translate>

help("print")

<translate> You'll get a long and complete description of everything the
print command can do.

Now we dominate totally our interpreter, we can begin with serious stuff.

Variables
Of course, printing "hello" is not very interesting. More interesting is
printing stuff you don't know before, or let Python find for you. That's where
the concept of variable comes in. A variable is simply a value that you store
under a name. For example, type this:< /translate>

a = "hello"

print a

<translate> I guess you understood what happened, we "saved" the string
"hello" under the name a. Now, a is not an unknown name anymore! We can
use it anywhere, for example in the print command. We can use any name
we want, just respecting simple rules, like not using spaces or punctuation.
For example, we could very well write:< /translate>

hello = "my own version of hello"

print hello

<translate> See? now hello is not an undefined word anymore. What if, by
terrible bad luck, we choosed a name that already exists in Python? Let's say
we want to store our string under the name "print":< /translate>

print = "hello"

<translate> Python is very intelligent and will tell us that this is not possible.
It has some "reserved" keywords that cannot be modified. But our own
variables can be modified anytime, that's exactly why they are called
variables, the contents can vary. For example:< /translate>

myVariable = "hello"

print myVariable

myVariable = "good bye"

print myVariable

<translate> We changed the value of myVariable. We can also copy variables:
< /translate>

Page 71 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

var1 = "hello"

var2 = var1

print var2

<translate> Note that it is interesting to give good names to your variables,
because when you'll write long programs, after a while you won't remember
what your variable named "a" is for. But if you named it for example
myWelcomeMessage, you'll remember easily what it is used for when you'll
see it.

Numbers
Of course you must know that programming is useful to treat all kind of
data, and especially numbers, not only text strings. One thing is important,
Python must know what kind of data it is dealing with. We saw in our print
hello example, that the print command recognized our "hello" string. That is
because by using the ", we told specifically the print command that what it
would come next is a text string.

We can always check what data type is the contents of a variable with the
special Python keyword type: < /translate>

myVar = "hello"

type(myVar)

<translate> It will tell us the contents of myVar is 'str', or string in Python
jargon. We have also other basic types of data, such as integer and float
numbers: < /translate>

firstNumber = 10

secondNumber = 20

print firstNumber + secondNumber

type(firstNumber)

<translate> This is already much more interesting, isn't it? Now we already
have a powerful calculator! Look well at how it worked, Python knows that
10 and 20 are integer numbers. So they are stored as "int", and Python can
do with them everything it can do with integers. Look at the results of
this:< /translate>

firstNumber = "10"

secondNumber = "20"

print firstNumber + secondNumber

<translate> See? We forced Python to consider that our two variables are
not numbers but mere pieces of text. Python can add two pieces of text
together, but it won't try to find out any sum. But we were talking about
integer numbers. There are also float numbers. The difference is that
integer numbers don't have decimal part, while foat numbers can have a
decimal part:< /translate>

var1 = 13

var2 = 15.65

print "var1 is of type ", type(var1)

print "var2 is of type ", type(var2)

<translate> Int and Floats can be mixed together without
problem:< /translate>

total = var1 + var2

print total

print type(total)

<translate> Of course the total has decimals, right? Then Python
automatically decided that the result is a float. In several cases such as this
one, Python automatically decides what type to give to something. In other
cases it doesn't. For example: < /translate>

varA = "hello 123"

varB = 456

print varA + varB

Page 72 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

<translate> This will give us an error, varA is a string and varB is an int, and
Python doesn't know what to do. But we can force Python to convert
between types: < /translate>

varA = "hello"

varB = 123

print varA + str(varB)

<translate> Now both are strings, the operation works! Note that we
"stringified" varB at the time of printing, but we didn't change varB itself. If
we wanted to turn varB permanently into a string, we would need to do
this:< /translate>

varB = str(varB)

<translate> We can also use int() and float() to convert to int and float if we
want:< /translate>

varA = "123"

print int(varA)

print float(varA)

<translate> Note on Python commands
You must have noticed that in this section we used the print command in
several ways. We printed variables, sums, several things separated by
commas, and even the result of other Python command such as type().
Maybe you also saw that doing those two commands:< /translate>

type(varA)

print type(varA)

<translate> have exactly the same result. That is because we are in the
interpreter, and everything is automatically printed on screen. When we'll
write more complex programs that run outside the interpreter, they won't
print automatically everything on screen, so we'll need to use the print
command. But from now on, let's stop using it here, it'll go faster. So we can
simply write: < /translate>

myVar = "hello friends"

myVar

<translate> You must also have seen that most of the Python commands (or
keywords) we already know have parenthesis used to tell them on what
contents the command must work: type(), int(), str(), etc. Only exception is
the print command, which in fact is not an exception, it also works normally
like this: print("hello"), but, since it is used often, the Python programmers
made a simplified version.

Lists
Another interesting data type is lists. A list is simply a list of other data. The
same way as we define a text string by using " ", we define lists by using []:
< /translate>

myList = [1,2,3]

type(myList)

myOtherList = ["Bart", "Frank", "Bob"]

myMixedList = ["hello", 345, 34.567]

<translate> You see that it can contain any type of data. Lists are very useful
because you can group variables together. You can then do all kind of things
within that groups, for example counting them:< /translate>

len(myOtherList)

<translate> or retrieving one item of a list:< /translate>

myName = myOtherList[0]

myFriendsName = myOtherList[1]

Page 73 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

<translate> You see that while the len() command returns the total number
of items in a list, their "position" in the list begins with 0. The first item in a
list is always at position 0, so in our myOtherList, "Bob" will be at position 2.
We can do much more stuff with lists such as you can read here
(http://www.diveintopython.net/native_data_types/lists.html), such as
sorting contents, removing or adding elements.

A funny and interesting thing for you: a text string is very similar to a list of
characters! Try doing this:< /translate>

myvar = "hello"

len(myvar)

myvar[2]

<translate> Usually all you can do with lists can also be done with strings. In
fact both lists and strings are sequences.

Outside strings, ints, floats and lists, there are more built-in data types,
such as dictionnaries
(http://www.diveintopython.net/native_data_types/index.html#d0e5174), or
you can even create your own data types with classes
(http://www.freenetpages.co.uk/hp/alan.gauld/tutclass.htm).

Indentation
One big cool use of lists is also browsing through them and do something
with each item. For example look at this: < /translate>

alldaltons = ["Joe", "William", "Jack", "Averell"]

for dalton in alldaltons:

 print dalton + " Dalton"

<translate> We iterated (programming jargon again!) through our list with
the "for ... in ..." command and did something with each of the items. Note
the special syntax: the for command terminates with : which indicates that
what will comes after will be a block of one of more commands.
Immediately after you enter the command line ending with :, the command
prompt will change to ... which means Python knows that a :-ended line has
happened and that what will come next will be part of it.

How will Python know how many of the next lines will be to be executed
inside the for...in operation? For that, Python uses indentation. That is, your
next lines won't begin immediately. You will begin them with a blank space,
or several blank spaces, or a tab, or several tabs. Other programming
languages use other methods, like putting everythin inside parenthesis, etc.
As long as you write your next lines with the same indentation, they will be
considered part of the for-in block. If you begin one line with 2 spaces and
the next one with 4, there will be an error. When you finished, just write
another line without indentation, or simply press Enter to come back from
the for-in block

Indentation is cool because if you make big ones (for example use tabs
instead of spaces because it's larger), when you write a big program you'll
have a clear view of what is executed inside what. We'll see that many other
commands than for-in can have indented blocks of code too.

For-in commands can be used for many things that must be done more than
once. It can for example be combined with the range() command:
< /translate>

serie = range(1,11)

total = 0

print "sum"

for number in serie:

 print number

 total = total + number

print "----"

print total

<translate> For use float in for loop range.< /translate>

Page 74 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

decimales = 1000 # for 3 decimales

#decimales = 10000 # for 4 decimales ...

for i in range(int(0 * decimales),int(180 * decimales),int(0.5 * decimales)):

 print float(i) / decimales

<translate> Or more complex things like this:< /translate>

alldaltons = ["Joe", "William", "Jack", "Averell"]

for n in range(4):

 print alldaltons[n], " is Dalton number ", n

<translate> You see that the range() command also has that strange
particularity that it begins with 0 (if you don't specify the starting number)
and that its last number will be one less than the ending number you
specify. That is, of course, so it works well with other Python commands. For
example:< /translate>

alldaltons = ["Joe", "William", "Jack", "Averell"]

total = len(alldaltons)

for n in range(total):

 print alldaltons[n]

<translate> Another interesting use of indented blocks is with the if
command. If executes a code block only if a certain condition is met, for
example:< /translate>

alldaltons = ["Joe", "William", "Jack", "Averell"]

if "Joe" in alldaltons:

 print "We found that Dalton!!!"

<translate> Of course this will always print the first sentence, but try
replacing the second line by:< /translate>

if "Lucky" in alldaltons:

<translate> Then nothing is printed. We can also specify an else:
statement:< /translate>

alldaltons = ["Joe", "William", "Jack", "Averell"]

if "Lucky" in alldaltons:

 print "We found that Dalton!!!"

else:

 print "Such Dalton doesn't exist!"

<translate>

Functions
The standard Python commands
(http://docs.python.org/reference/lexical_analysis.html#identifiers) are not
many. In current version of Python there are about 30, and we already know
several of them. But imagine if we could invent our own commands? Well,
we can, and it's extremely easy. In fact, most the additional modules that
you can plug into your Python installation do just that, they add commands
that you can use. A custom command in Python is called a function and is
made like this:< /translate>

def printsqm(myValue):

 print str(myValue)+" square meters"

printsqm(45)

<translate> Extremely simple: the def() command defines a new function.
You give it a name, and inside the parenthesis you define arguments that
we'll use in our function. Arguments are data that will be passed to the
function. For example, look at the len() command. If you just write len()
alone, Python will tell you it needs an argument. That is, you want len() of
something, right? Then, for example, you'll write len(myList) and you'll get
the length of myList. Well, myList is an argument that you pass to the len()
function. The len() function is defined in such a way that it knows what to do
with what is passed to it. Same as we did here.

Page 75 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

The "myValue" name can be anything, and it will be used only inside the
function. It is just a name you give to the argument so you can do something
with it, but it also serves so the function knows how many arguments to
expect. For example, if you do this:< /translate>

printsqm(45,34)

<translate> There will be an error. Our function was programmed to receive
just one argument, but it received two, 45 and 34. We could instead do
something like this:< /translate>

def sum(val1,val2):

 total = val1 + val2

 return total

sum(45,34)

myTotal = sum(45,34)

<translate> We made a function that receives two arguments, sums them,
and returns that value. Returning something is very useful, because we can
do something with the result, such as store it in the myTotal variable. Of
course, since we are in the interpreter and everything is printed,
doing:< /translate>

sum(45,34)

<translate> will print the result on the screen, but outside the interpreter,
since there is no more print command inside the function, nothing would
appear on the screen. You would need to do: < /translate>

print sum(45,34)

<translate> to have something printed. Read more about functions here
(http://www.diveintopython.net/getting_to_know_python/declaring_functions.html)

Modules
Now that we have a good idea of how Python works, we'll need one last
thing: How to work with files and modules.

Until now, we wrote Python instructions line by line in the interpreter, right?
What if we could write several lines together, and have them executed all at
once? It would certainly be handier for doing more complex things. And we
could save our work too. Well, that too, is extremely easy. Simply open a
text editor (such as the windows notepad), and write all your Python lines,
the same way as you write them in the interpreter, with indentations, etc.
Then, save that file somewhere, preferably with a .py extension. That's it,
you have a complete Python program. Of course, there are much better
editors than notepad, but it is just to show you that a Python program is
nothing else than a text file.

To make Python execute that program, there are hundreds of ways. In
windows, simply right-click your file, open it with Python, and execute it. But
you can also execute it from the Python interpreter itself. For this, the
interpreter must know where your .py program is. In FreeCAD, the easiest
way is to place your program in a place that FreeCAD's Python interpreter
knows by default, such as FreeCAD's bin folder, or any of the Mod folders.
Suppose we write a file like this:< /translate>

def sum(a,b):

 return a + b

print "test.py succesfully loaded"

<translate>

and we save it as test.py in our FreeCAD/bin directory. Now, let's start
FreeCAD, and in the interpreter window, write:< /translate>

import test

Page 76 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

<translate> without the .py extension. This will simply execute the contents
of the file, line by line, just as if we had written it in the interpreter. The sum
function will be created, and the message will be printed. There is one big
difference: the import command is made not only to execute programs
written in files, like ours, but also to load the functions inside, so they
become available in the interpreter. Files containing functions, like ours, are
called modules.

Normally when we write a sum() function in the interpreter, we execute it
simply like that: < /translate>

sum(14,45)

<translate> Like we did earlier. When we import a module containing our
sum() function, the syntax is a bit different. We do:< /translate>

test.sum(14,45)

<translate> That is, the module is imported as a "container", and all its
functions are inside. This is extremely useful, because we can import a lot of
modules, and keep everything well organized. So, basically, everywhere you
see something.somethingElse, with a dot in between, that means
somethingElse is inside something.

We can also throw out the test part, and import our sum() function directly
into the main interpreter space, like this:< /translate>

from test import *

sum(12,54)

<translate> Basically all modules behave like that. You import a module,
then you can use its functions like that: module.function(argument). Almost
all modules do that: they define functions, new data types and classes that
you can use in the interpreter or in your own Python modules, because
nothing prevents you to import modules inside your module!

One last extremely useful thing. How do we know what modules we have,
what functions are inside and how to use them (that is, what kind of
arguments they need)? We saw already that Python has a help() function.
Doing:< /translate>

help()

modules

<translate> Will give us a list of all available modules. We can now type q to
get out of the interactive help, and import any of them. We can even browse
their content with the dir() command< /translate>

import math

dir(math)

<translate> We'll see all the functions contained in the math module, as well
as strange stuff named __doc__, __file__, __name__. The __doc__ is
extremely useful, it is a documentation text. Every function of (well-made)
modules has a __doc__ that explains how to use it. For example, we see that
there is a sin function in side the math module. Want to know how to use it?
< /translate>

print math.sin.__doc__

<translate> And finally one last little goodie: When we work on programming
a new module, we often want to test it.

Then it's best to replace the file extension with py and it is a normal Python
module myModule.fcmacro => myModule.py. < /translate>

import myModule

myModule.myTestFunction()

Page 77 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Macros (/wiki/index.php?title=Macros)
next: Python scripting tutorial > (/wiki/index.php?
title=Python_scripting_tutorial)

<translate> But what if we see that myTestFunction() doesn't work correctly?
We go back to our editor and modifiy it. Then, instead of closing and
reopening the python interpreter, we can simply update the module like
this:< /translate>

reload(myModule)

<translate> This is because Python doesn't know about the extension
fcmacro.

However, there are two ways you can go: 1. Inside the one macro use
Python's exec or execfile functions.< /translate>

f = open("myModule","r")

d = f.read()

exec d

<translate> or < /translate>

execfile "myModule"

<translate> For share code across macros, you can e.g. access the FreeCAD
or FreeCADGui module (or any other Python module) and set any attribute
to it. This should survive the execution of the macro.< /translate>

import FreeCAD

if hasattr(FreeCAD,"macro2_executed"):

 ...

else:

 FreeCAD.macro2_executed = True # you can assign any value because we only check for the ex

istence of the attribute

 ... execute macro2

<translate>

Starting with FreeCAD
Well, I think you must know have a good idea of how Python works, and you
can start exploring what FreeCAD has to offer. FreeCAD's Python functions
are all well organized in different modules. Some of them are already
loaded (imported) when you start FreeCAD. So, just do< /translate>

dir()

<translate> and read on to FreeCAD Scripting Basics (/wiki/index.php?
title=FreeCAD_Scripting_Basics)...

Of course, we saw here only a very small part of the Python world. There are
many important concepts that we didn't mention here. There are three very
important Python reference documents on the net:

◾ the official Python tutorial with way more information than this one
(http://docs.python.org/3/tutorial/index.html)

◾ the official Python reference (http://docs.python.org/reference/)
◾ the Dive into Python (http://www.diveintopython.net) wikibook/ book.

Be sure to bookmark them!

Index

(/wiki/index.php?title=Online_Help_Toc)
</translate>

< translate>

Page 78 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Python scripting in FreeCAD
FreeCAD is built from scratch to be totally controlled by Python scripts.
Almost all parts of FreeCAD, such as the interface, the scene contents, and
even the representation of this content in the 3D views, are accessible from
the built-in Python interpreter or from your own scripts. As a result, FreeCAD
is probably one of the most deeply customizable engineering applications
available today.

In its current state however, FreeCAD has very few 'native' commands to
interact with your 3D objects, mainly because it is still in the early stages of
development, but also because the philosophy behind it is more to provide
a platform for CAD development than a specific use application. But the
ease of Python scripting inside FreeCAD is a quick way to see new
functionality being developed by 'power users', typically users who know a
bit of Python programming. Python is one of the most popular interpreted
languages, and because it is generally regarded as easy to learn, you too
can soon be making your own FreeCAD 'power user' scripts.

If you are not familiar with Python, we recommend you search for tutorials
on the internet and have a quick look at its structure. Python is a very easy
language to learn, especially because it can be run inside an interpreter,
where simple commands, right up to complete programs, can be executed
on the fly without the need to compile anything. FreeCAD has a built-in
Python interpreter. If you don't see the window labeled 'Python console' as
shown below, you can activate it under the View -> Views -> Python console
to bring-up the interpreter.

The interpreter

From the interpreter, you can access all your system-installed Python
modules, as well as the built-in FreeCAD modules, and all additional
FreeCAD modules you installed later. The screenshot below shows the
Python interpreter:

(/wiki/index.php?title=File:Screenshot_pythoninterpreter.jpg)

From the interpreter, you can execute Python code and browse through the
available classes and functions. FreeCAD provides a very handy class
browser for exploration of your new FreeCAD world: When you type the
name of a known class followed by a period (meaning you want to add
something from that class), a class browser window opens, where you can
navigate between available subclasses and methods. When you select
something, an associated help text (if it exists) is displayed:

(/wiki/index.php?title=File:Screenshot_classbrowser.jpg)

Page 79 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

So, start here by typing App. or Gui. and see what happens. Another more
generic Python way of exploring the content of modules and classes is to
use the 'print dir()' command. For example, typing print dir() will list all
modules currently loaded in FreeCAD. print dir(App) will show you
everything inside the App module, etc.

Another useful feature of the interpreter is the possibility to go back
through the command history and retrieve a line of code that you already
typed earlier. To navigate through the command history, just use CTRL+UP
or CTRL+DOWN.

By right-clicking in the interpreter window, you also have several other
options, such as copy the entire history (useful when you want to
experiment with things before making a full script of them), or insert a
filename with complete path.

Python Help

In the FreeCAD Help menu, you'll find an entry labeled 'Python help', which
will open a browser window containing a complete, realtime-generated
documentation of all Python modules available to the FreeCAD interpreter,
including Python and FreeCAD built-in modules, system-installed modules,
and FreeCAD additional modules. The documentation available there
depends on how much effort each module developer put into documenting
his code, but usually Python modules have a reputation for being fairly well
documented. Your FreeCAD window must stay open for this documentation
system to work.

Built-in modules
Since FreeCAD is designed to be run without a Graphical User Interface
(GUI), almost all its functionality is separated into two groups: Core
functionality, named 'App', and GUI functionality, named 'Gui'. So, our two
main FreeCAD built-in modules are called App and Gui. These two modules
can also be accessed from scripts outside of the interpreter, by the names
'FreeCAD' and 'FreeCADGui' respectively.

◾ In the App module, you'll find everything related to the application
itself, like methods for opening or closing files, and to the documents,
like setting the active document or listing their contents.

◾ In the Gui module, you'll find tools for accessing and managing Gui
elements, like the workbenches and their toolbars, and, more
interestingly, the graphical representation of all FreeCAD content.

Listing all the content of those modules is a bit counter-productive task,
since they grow quite fast with FreeCAD development. But the two browsing
tools provided (the class browser and the Python help) should give you, at
any moment, complete and up-to-date documentation of these modules.

The App and Gui objects

As we said, in FreeCAD, everything is separated between core and
representation. This includes the 3D objects too. You can access defining
properties of objects (called features in FreeCAD) via the App module, and
change the way they are represented on screen via the Gui module. For
example, a cube has properties that define it, (like width, length, height)
that are stored in an App object, and representation properties, (like faces
color, drawing mode) that are stored in a corresponding Gui object.

This way of doing things allows a very wide range of uses, like having
algorithms work only on the definition part of features, without the need to
care about any visual part, or even redirect the content of the document to
non-graphical application, such as lists, spreadsheets, or element analysis.

For every App object in your document, there exists a corresponding Gui
object. Infact the document itself has both App and a Gui objects. This, of
course, is only valid when you run FreeCAD with its full interface. In the
command-line version no GUI exists, so only App objects are availible. Note
that the Gui part of objects is re-generated every time an App object is

Page 80 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

marked as 'to be recomputed' (for example when one of its parameters
changes), so changes you might have made directly to the Gui object may be
lost.

To access the App part of something, you type:< /translate>

myObject = App.ActiveDocument.getObject("ObjectName")

<translate> where "ObjectName" is the name of your object. You can also
type: < /translate>

myObject = App.ActiveDocument.ObjectName

<translate> To access the Gui part of the same object, you type:< /translate>

myViewObject = Gui.ActiveDocument.getObject("ObjectName")

<translate> where "ObjectName" is the name of your object. You can also
type: < /translate>

myViewObject = App.ActiveDocument.ObjectName.ViewObject

<translate> If we have no GUI (for example we are in command-line mode),
the last line will return 'None'.

The Document objects

In FreeCAD all your work resides inside Documents. A document contains
your geometry and can be saved to a file. Several documents can be opened
at the same time. The document, like the geometry contained inside, has
App and Gui objects. App object contains your actual geometry definitions,
while the Gui object contains the different views of your document. You can
open several windows, each one viewing your work with a different zoom
factor or point of view. These views are all part of your document's Gui
object.

To access the App part the currently open (active) document, you
type:< /translate>

myDocument = App.ActiveDocument

<translate> To create a new document, type:< /translate>

myDocument = App.newDocument("Document Name")

<translate> To access the Gui part the currently open (active) document, you
type: < /translate>

myGuiDocument = Gui.ActiveDocument

<translate> To access the current view, you type:< /translate>

myView = Gui.ActiveDocument.ActiveView

<translate>

Using additional modules
The FreeCAD and FreeCADGui modules are solely responsibles for creating
and managing objects in the FreeCAD document. They don't actually do
anything such as creating or modifying geometry. That is because that
geometry can be of several types, and so it is managed by additional
modules, each responsible for managing a certain geometry type. For
example, the Part Module (/wiki/index.php?title=Part_Module) uses the
OpenCascade kernel, and therefore is able to create and manipulate B-rep
(http://en.wikipedia.org/wiki/Boundary_representation) type geometry,
which is what OpenCascade is built for. The Mesh Module (/wiki/index.php?
title=Mesh_Module) is able to build and modify mesh objects. That way,
FreeCAD is able to handle a wide variety of object types, that can all coexist
in the same document, and new types could be added easily in the future.

Page 81 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Creating objects

Each module has its own way to treat its geometry, but one thing they
usually all can do is create objects in the document. But the FreeCAD
document is also aware of the available object types provided by the
modules:< /translate>

FreeCAD.ActiveDocument.supportedTypes()

<translate> will list you all the possible objects you can create. For example,
let's create a mesh (treated by the mesh module) and a part (treated by the
part module):< /translate>

myMesh = FreeCAD.ActiveDocument.addObject("Mesh::Feature","myMeshName")

myPart = FreeCAD.ActiveDocument.addObject("Part::Feature","myPartName")

<translate> The first argument is the object type, the second the name of
the object. Our two objects look almost the same: They don't contain any
geometry yet, and most of their properties are the same when you inspect
them with dir(myMesh) and dir(myPart). Except for one, myMesh has a
"Mesh" property and "Part" has a "Shape" property. That is where the Mesh
and Part data are stored. For example, let's create a Part cube and store it in
our myPart object:< /translate>

import Part

cube = Part.makeBox(2,2,2)

myPart.Shape = cube

<translate> You could try storing the cube inside the Mesh property of the
myMesh object, it will return an error complaining of the wrong type. That is
because those properties are made to store only a certain type. In the
myMesh's Mesh property, you can only save stuff created with the Mesh
module. Note that most modules also have a shortcut to add their geometry
to the document:< /translate>

import Part

cube = Part.makeBox(2,2,2)

Part.show(cube)

<translate>

Modifying objects

Modifying an object is done the same way: < /translate>

import Part

cube = Part.makeBox(2,2,2)

myPart.Shape = cube

<translate> Now let's change the shape by a bigger one:< /translate>

biggercube = Part.makeBox(5,5,5)

myPart.Shape = biggercube

<translate>

Querying objects

You can always look at the type of an object like this: < /translate>

myObj = FreeCAD.ActiveDocument.getObject("myObjectName")

print myObj.TypeId

<translate> or know if an object is derived from one of the basic ones (Part
Feature, Mesh Feature, etc):< /translate>

print myObj.isDerivedFrom("Part::Feature")

<translate> Now you can really start playing with FreeCAD! To look at what
you can do with the Part Module (/wiki/index.php?title=Part_Module), read
the Part scripting (/wiki/index.php?title=Topological_data_scripting) page,
or the Mesh Scripting (/wiki/index.php?title=Mesh_Scripting) page for
working with the Mesh Module (/wiki/index.php?title=Mesh_Module). Note

Page 82 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Python scripting tutorial (/wiki/index.php?
title=Python_scripting_tutorial)

next: Mesh Scripting > (/wiki/index.php?title=Mesh_Scripting)

that, although the Part and Mesh modules are the most complete and
widely used, other modules such as the Draft Module (/wiki/index.php?
title=Draft_Module) also have scripting (/wiki/index.php?title=Draft_API)
APIs that can be useful to you. For a complete list of each modules and their
available tools, visit the Category:API (/wiki/index.php?title=Category:API)
section.

Index (/wiki/index.php?title=Online_Help_Toc)
</translate>

< translate>

Introduction

First of all you have to import the Mesh module:< /translate>

import Mesh

<translate> After that you have access to the Mesh module and the Mesh
class which facilitate the functions of the FreeCAD C++ Mesh-Kernel.

Creation and Loading

To create an empty mesh object just use the standard constructor:

</translate>

mesh = Mesh.Mesh()

<translate>

You can also create an object from a file

</translate>

mesh = Mesh.Mesh('D:/temp/Something.stl')

<translate>

(A list of compatible filetypes can be found under 'Meshes' here
(/wiki/index.php?title=Feature_list#IO).)

Or create it out of a set of triangles described by their corner points:

</translate>

planarMesh = [

triangle 1

[-0.5000,-0.5000,0.0000],[0.5000,0.5000,0.0000],[-0.5000,0.5000,0.0000],

#triangle 2

[-0.5000,-0.5000,0.0000],[0.5000,-0.5000,0.0000],[0.5000,0.5000,0.0000],

]

planarMeshObject = Mesh.Mesh(planarMesh)

Mesh.show(planarMeshObject)

<translate>

The Mesh-Kernel takes care about creating a topological correct data
structure by sorting coincident points and edges together.

Later on you will see how you can test and examine mesh data.

Modeling

To create regular geometries you can use the Python script
BuildRegularGeoms.py.

</translate>

import BuildRegularGeoms

Page 83 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

<translate>

This script provides methods to define simple rotation bodies like spheres,
ellipsoids, cylinders, toroids and cones. And it also has a method to create a
simple cube. To create a toroid, for instance, can be done as follows:

</translate>

t = BuildRegularGeoms.Toroid(8.0, 2.0, 50) # list with several thousands triangles

m = Mesh.Mesh(t)

<translate>

The first two parameters define the radiuses of the toroid and the third
parameter is a sub-sampling factor for how many triangles are created. The
higher this value the smoother and the lower the coarser the body is. The
Mesh class provides a set of boolean functions that can be used for
modeling purposes. It provides union, intersection and difference of two
mesh objects.

</translate>

m1, m2 # are the input mesh objects

m3 = Mesh.Mesh(m1) # create a copy of m1

m3.unite(m2) # union of m1 and m2, the result is stored in m3

m4 = Mesh.Mesh(m1)

m4.intersect(m2) # intersection of m1 and m2

m5 = Mesh.Mesh(m1)

m5.difference(m2) # the difference of m1 and m2

m6 = Mesh.Mesh(m2)

m6.difference(m1) # the difference of m2 and m1, usually the result is different to m5

<translate>

Finally, a full example that computes the intersection between a sphere and
a cylinder that intersects the sphere.

</translate>

import Mesh, BuildRegularGeoms

sphere = Mesh.Mesh(BuildRegularGeoms.Sphere(5.0, 50))

cylinder = Mesh.Mesh(BuildRegularGeoms.Cylinder(2.0, 10.0, True, 1.0, 50))

diff = sphere

diff = diff.difference(cylinder)

d = FreeCAD.newDocument()

d.addObject("Mesh::Feature","Diff_Sphere_Cylinder").Mesh=diff

d.recompute()

<translate>

Examining and Testing

Write your own Algorithms

Exporting

You can even write the mesh to a python module:

</translate>

m.write("D:/Develop/Projekte/FreeCAD/FreeCAD_0.7/Mod/Mesh/SavedMesh.py")

import SavedMesh

m2 = Mesh.Mesh(SavedMesh.faces)

<translate>

Gui related stuff

Odds and Ends

An extensive (though hard to use) source of Mesh related scripting are the
unit test scripts of the Mesh-Module. In this unit tests literally all methods
are called and all properties/attributes are tweaked. So if you are bold
enough, take a look at the Unit Test module (http://free-
cad.svn.sourceforge.net/viewvc/free-
cad/trunk/src/Mod/Mesh/App/MeshTestsApp.py?view=markup).

Page 84 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: FreeCAD Scripting Basics (/wiki/index.php?
title=FreeCAD_Scripting_Basics)
next: Topological data scripting > (/wiki/index.php?
title=Topological_data_scripting)

 (/wiki/index.php?title=File:Base_ExampleCommandModel.png) Tutorial

Topic
Programming
Level
Intermediate
Time to complete

Author

FreeCAD version

Example File(s)

See also Mesh API (/wiki/index.php?title=Mesh_API)

Index (/wiki/index.php?title=Online_Help_Toc)
</translate>

< translate>

This page describes several methods for creating and modifying Part shapes
(/wiki/index.php?title=Part_Module) from python. Before reading this page,
if you are new to python, it is a good idea to read about python scripting
(/wiki/index.php?title=Introduction_to_Python) and how python scripting
works in FreeCAD (/wiki/index.php?title=FreeCAD_Scripting_Basics).

Introduction
We will here explain you how to control the Part Module (/wiki/index.php?
title=Part_Module) directly from the FreeCAD python interpreter, or from
any external script. The basics about Topological data scripting are
described in Part Module Explaining the concepts (/wiki/index.php?
title=Part_Module#Explaining_the_concepts). Be sure to browse the
Scripting (/wiki/index.php?title=Scripting) section and the FreeCAD Scripting
Basics (/wiki/index.php?title=FreeCAD_Scripting_Basics) pages if you need
more information about how python scripting works in FreeCAD.

Class Diagram

This is a Unified Modeling Language (UML)
(http://en.wikipedia.org/wiki/Unified_Modeling_Language) overview of the
most important classes of the Part module:

Page 85 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

(/wiki/index.php?title=File:Part_Classes.jpg)

Geometry

The geometric objects are the building block of all topological objects:

◾ Geom Base class of the geometric objects
◾ Line A straight line in 3D, defined by starting point and end point
◾ Circle Circle or circle segment defined by a center point and start and

end point
◾ And soon some more

Topology

The following topological data types are available:

◾ Compound A group of any type of topological object.
◾ Compsolid A composite solid is a set of solids connected by their faces.

It expands the notions of WIRE and SHELL to solids.
◾ Solid A part of space limited by shells. It is three dimensional.
◾ Shell A set of faces connected by their edges. A shell can be open or

closed.
◾ Face In 2D it is part of a plane; in 3D it is part of a surface. Its geometry

is constrained (trimmed) by contours. It is two dimensional.
◾ Wire A set of edges connected by their vertices. It can be an open or

closed contour depending on whether the edges are linked or not.
◾ Edge A topological element corresponding to a restrained curve. An

edge is generally limited by vertices. It has one dimension.
◾ Vertex A topological element corresponding to a point. It has zero

dimension.
◾ Shape A generic term covering all of the above.

Quick example : Creating simple topology

 (/wiki/index.php?title=File:Wire.png)

Page 86 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

We will now create a topology by constructing it out of simpler geometry. As
a case study we use a part as seen in the picture which consists of four
vertexes, two circles and two lines.
Creating Geometry

First we have to create the distinct geometric parts of this wire. And we have
to take care that the vertexes of the geometric parts are at the same
position. Otherwise later on we might not be able to connect the geometric
parts to a topology!

So we create first the points:

</translate>
from FreeCAD import Base

V1 = Base.Vector(0,10,0)

V2 = Base.Vector(30,10,0)

V3 = Base.Vector(30,-10,0)

V4 = Base.Vector(0,-10,0)

<translate>
Arc

To create an arc of
circle we make a
helper point and
create the arc of
circle through
three points:

</translate>
VC1 = Base.Vector(-10,0,0)

C1 = Part.Arc(V1,VC1,V4)

and the second one

VC2 = Base.Vector(40,0,0)

C2 = Part.Arc(V2,VC2,V3)

<translate>
Line

The line can
be created
very simple
out of the
points:

</translate>
L1 = Part.Line(V1,V2)

and the second one

L2 = Part.Line(V4,V3)

<translate>
Putting all together

The last step is to put the geometric base elements together and bake a
topological shape:

</translate>
S1 = Part.Shape([C1,C2,L1,L2])

<translate>
Make a prism

Now extrude the wire in a direction and make an actual 3D shape:

</translate>
W = Part.Wire(S1.Edges)

P = W.extrude(Base.Vector(0,0,10))

<translate>

 (/wiki/index.php?title=File:Circel.png)

 (/wiki/index.php?title=File:Line.png)

Page 87 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Show it all

</translate>
Part.show(P)

<translate>

Creating basic shapes
You can easily create basic topological objects with the "make...()" methods
from the Part Module:

</translate>
b = Part.makeBox(100,100,100)

Part.show(b)

<translate>
A couple of other make...() methods available:

◾ makeBox(l,w,h): Makes a box located in p and pointing into the
direction d with the dimensions (l,w,h)

◾ makeCircle(radius): Makes a circle with a given radius
◾ makeCone(radius1,radius2,height): Makes a cone with a given radii and

height
◾ makeCylinder(radius,height): Makes a cylinder with a given radius and

height.
◾ makeLine((x1,y1,z1),(x2,y2,z2)): Makes a line of two points
◾ makePlane(length,width): Makes a plane with length and width
◾ makePolygon(list): Makes a polygon of a list of points
◾ makeSphere(radius): Make a sphere with a given radius
◾ makeTorus(radius1,radius2): Makes a torus with a given radii

See the Part API (/wiki/index.php?title=Part_API) page for a complete list of
available methods of the Part module.
Importing the needed modules

First we need to import the Part module so we can use its contents in
python. We'll also import the Base module from inside the FreeCAD module:

</translate>
import Part

from FreeCAD import Base

<translate>
Creating a Vector

Vectors (http://en.wikipedia.org/wiki/Euclidean_vector) are one of the most
important pieces of information when building shapes. They contain a 3
numbers usually (but not necessarily always) the x, y and z cartesian
coordinates. You create a vector like this:

</translate>
myVector = Base.Vector(3,2,0)

<translate>
We just created a vector at coordinates x=3, y=2, z=0. In the Part module,
vectors are used everywhere. Part shapes also use another kind of point
representation, called Vertex, which is acually nothing else than a container
for a vector. You access the vector of a vertex like this:

</translate>

Page 88 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

myVertex = myShape.Vertexes[0]

print myVertex.Point

> Vector (3, 2, 0)

<translate>
Creating an Edge

An edge is nothing but a line with two vertexes:

</translate>
edge = Part.makeLine((0,0,0), (10,0,0))

edge.Vertexes

> [<Vertex object at 01877430>, <Vertex object at 014888E0>]

<translate>
Note: You can also create an edge by passing two vectors:

</translate>
vec1 = Base.Vector(0,0,0)

vec2 = Base.Vector(10,0,0)

line = Part.Line(vec1,vec2)

edge = line.toShape()

<translate>
You can find the length and center of an edge like this:

</translate>
edge.Length

> 10.0

edge.CenterOfMass

> Vector (5, 0, 0)

<translate>
Putting the shape on screen

So far we created an edge object, but it doesn't appear anywhere on screen.
This is because we just manipulated python objects here. The FreeCAD 3D
scene only displays what you tell it to display. To do that, we use this simple
method:

</translate>
Part.show(edge)

<translate>
An object will be created in our FreeCAD document, and our "edge" shape
will be attributed to it. Use this whenever it's time to display your creation
on screen.
Creating a Wire

A wire is a multi-edge line and can be created from a list of edges or even a
list of wires:

</translate>
edge1 = Part.makeLine((0,0,0), (10,0,0))

edge2 = Part.makeLine((10,0,0), (10,10,0))

wire1 = Part.Wire([edge1,edge2])

edge3 = Part.makeLine((10,10,0), (0,10,0))

edge4 = Part.makeLine((0,10,0), (0,0,0))

wire2 = Part.Wire([edge3,edge4])

wire3 = Part.Wire([wire1,wire2])

wire3.Edges

> [<Edge object at 016695F8>, <Edge object at 0197AED8>, <Edge object at 01828B20>, <Edge obje

ct at 0190A788>]

Part.show(wire3)

<translate>
Part.show(wire3) will display the 4 edges that compose our wire. Other
useful information can be easily retrieved:

</translate>

Page 89 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

wire3.Length

> 40.0

wire3.CenterOfMass

> Vector (5, 5, 0)

wire3.isClosed()

> True

wire2.isClosed()

> False

<translate>
Creating a Face

Only faces created from closed wires will be valid. In this example, wire3 is a
closed wire but wire2 is not a closed wire (see above)

</translate>
face = Part.Face(wire3)

face.Area

> 99.999999999999972

face.CenterOfMass

> Vector (5, 5, 0)

face.Length

> 40.0

face.isValid()

> True

sface = Part.Face(wire2)

face.isValid()

> False

<translate>
Only faces will have an area, not wires nor edges.
Creating a Circle

A circle can be created as simply as this:

</translate>
circle = Part.makeCircle(10)

circle.Curve

> Circle (Radius : 10, Position : (0, 0, 0), Direction : (0, 0, 1))

<translate>
If you want to create it at certain position and with certain direction:

</translate>
ccircle = Part.makeCircle(10, Base.Vector(10,0,0), Base.Vector(1,0,0))

ccircle.Curve

> Circle (Radius : 10, Position : (10, 0, 0), Direction : (1, 0, 0))

<translate>
ccircle will be created at distance 10 from origin on x and will be facing
towards x axis. Note: makeCircle only accepts Base.Vector() for position and
normal but not tuples. You can also create part of the circle by giving start
angle and end angle as:

</translate>
from math import pi

arc1 = Part.makeCircle(10, Base.Vector(0,0,0), Base.Vector(0,0,1), 0, 180)

arc2 = Part.makeCircle(10, Base.Vector(0,0,0), Base.Vector(0,0,1), 180, 360)

<translate>
Both arc1 and arc2 jointly will make a circle. Angles should be provided in
degrees, if you have radians simply convert them using formula: degrees =
radians * 180/PI or using python's math module (after doing import math, of
course):

</translate>
degrees = math.degrees(radians)

<translate>
Creating an Arc along points

Page 90 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Unfortunately there is no makeArc function but we have Part.Arc function to
create an arc along three points. Basically it can be supposed as an arc
joining start point and end point along the middle point. Part.Arc creates an
arc object on which .toShape() has to be called to get the edge object, the
same way as when using Part.Line instead of Part.makeLine.

</translate>
arc = Part.Arc(Base.Vector(0,0,0),Base.Vector(0,5,0),Base.Vector(5,5,0))

arc

> <Arc object>

arc_edge = arc.toShape()

<translate>
Arc only accepts Base.Vector() for points but not tuples. arc_edge is what we
want which we can display using Part.show(arc_edge). You can also obtain
an arc by using a portion of a circle:

</translate>
from math import pi

circle = Part.Circle(Base.Vector(0,0,0),Base.Vector(0,0,1),10)

arc = Part.Arc(c,0,pi)

<translate>
Arcs are valid edges, like lines. So they can be used in wires too.
Creating a polygon

A polygon is simply a wire with multiple straight edges. The makePolygon
function takes a list of points and creates a wire along those points:

</translate>
lshape_wire = Part.makePolygon([Base.Vector(0,5,0),Base.Vector(0,0,0),Base.Vector(5,0,0)])

<translate>
Creating a Bezier curve

Bézier curves are used to model smooth curves using a series of poles
(points) and optional weights. The function below makes a Part.BezierCurve
from a series of FreeCAD.Vector points. (Note: when "getting" and "setting" a
single pole or weight indices start at 1, not 0.)

</translate>
def makeBCurveEdge(Points):

 geomCurve = Part.BezierCurve()

 geomCurve.setPoles(Points)

 edge = Part.Edge(geomCurve)

 return(edge)

<translate>
Creating a Plane

A Plane is simply a flat rectangular surface. The method used to create one
is this: makePlane(length,width,[start_pnt,dir_normal]). By default
start_pnt = Vector(0,0,0) and dir_normal = Vector(0,0,1). Using dir_normal =
Vector(0,0,1) will create the plane facing z axis, while dir_normal = Vector
(1,0,0) will create the plane facing x axis:

</translate>
plane = Part.makePlane(2,2)

plane

><Face object at 028AF990>

plane = Part.makePlane(2,2, Base.Vector(3,0,0), Base.Vector(0,1,0))

plane.BoundBox

> BoundBox (3, 0, 0, 5, 0, 2)

<translate>
BoundBox is a cuboid enclosing the plane with a diagonal starting at (3,0,0)
and ending at (5,0,2). Here the BoundBox thickness in y axis is zero, since
our shape is totally flat.

Note: makePlane only accepts Base.Vector() for start_pnt and dir_normal

Page 91 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

but not tuples
Creating an ellipse

To create an ellipse there are several ways:

</translate>
Part.Ellipse()

<translate>
Creates an ellipse with major radius 2 and minor radius 1 with the center in
(0,0,0)

</translate>
Part.Ellipse(Ellipse)

<translate>
Create a copy of the given ellipse

</translate>
Part.Ellipse(S1,S2,Center)

<translate>
Creates an ellipse centered on the point Center, where the plane of the
ellipse is defined by Center, S1 and S2, its major axis is defined by Center
and S1, its major radius is the distance between Center and S1, and its minor
radius is the distance between S2 and the major axis.

</translate>
Part.Ellipse(Center,MajorRadius,MinorRadius)

<translate>
Creates an ellipse with major and minor radii MajorRadius and MinorRadius,
and located in the plane defined by Center and the normal (0,0,1)

</translate>
eli = Part.Ellipse(Base.Vector(10,0,0),Base.Vector(0,5,0),Base.Vector(0,0,0))

Part.show(eli.toShape())

<translate>
In the above code we have passed S1, S2 and center. Similarly to Arc, Ellipse
also creates an ellipse object but not edge, so we need to convert it into
edge using toShape() to display.

Note: Arc only accepts Base.Vector() for points but not tuples

</translate>
eli = Part.Ellipse(Base.Vector(0,0,0),10,5)

Part.show(eli.toShape())

<translate>
for the above Ellipse constructor we have passed center, MajorRadius and
MinorRadius
Creating a Torus

Using the method makeTorus(radius1,radius2,
[pnt,dir,angle1,angle2,angle]). By default pnt=Vector(0,0,0),dir=Vector
(0,0,1),angle1=0,angle2=360 and angle=360. Consider a torus as small circle
sweeping along a big circle. Radius1 is the radius of big cirlce, radius2 is the
radius of small circle, pnt is the center of torus and dir is the normal
direction. angle1 and angle2 are angles in radians for the small circle, the
last parameter angle is to make a section of the torus:

</translate>
torus = Part.makeTorus(10, 2)

<translate>

Page 92 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

The above code will create a torus with diameter 20(radius 10) and thickness
4 (small cirlce radius 2)

</translate>
tor=Part.makeTorus(10,5,Base.Vector(0,0,0),Base.Vector(0,0,1),0,180)

<translate>
The above code will create a slice of the torus

</translate>
tor=Part.makeTorus(10,5,Base.Vector(0,0,0),Base.Vector(0,0,1),0,360,180)

<translate>
The above code will create a semi torus, only the last parameter is changed
i.e the angle and remaining angles are defaults. Giving the angle 180 will
create the torus from 0 to 180, that is, a half torus.
Creating a box or cuboid

Using makeBox(length,width,height,[pnt,dir]). By default pnt=Vector(0,0,0)
and dir=Vector(0,0,1)

</translate>
box = Part.makeBox(10,10,10)

len(box.Vertexes)

> 8

<translate>
Creating a Sphere

Using makeSphere(radius,[pnt, dir, angle1,angle2,angle3]). By default
pnt=Vector(0,0,0), dir=Vector(0,0,1), angle1=-90, angle2=90 and angle3=360.
angle1 and angle2 are the vertical minimum and maximum of the sphere,
angle3 is the sphere diameter itself.

</translate>
sphere = Part.makeSphere(10)

hemisphere = Part.makeSphere(10,Base.Vector(0,0,0),Base.Vector(0,0,1),-90,90,180)

<translate>
Creating a Cylinder

Using makeCylinder(radius,height,[pnt,dir,angle]). By default pnt=Vector
(0,0,0),dir=Vector(0,0,1) and angle=360

</translate>
cylinder = Part.makeCylinder(5,20)

partCylinder = Part.makeCylinder(5,20,Base.Vector(20,0,0),Base.Vector(0,0,1),180)

<translate>
Creating a Cone

Using makeCone(radius1,radius2,height,[pnt,dir,angle]). By default
pnt=Vector(0,0,0), dir=Vector(0,0,1) and angle=360

</translate>
cone = Part.makeCone(10,0,20)

semicone = Part.makeCone(10,0,20,Base.Vector(20,0,0),Base.Vector(0,0,1),180)

<translate>

Modifying shapes
There are several ways to modify shapes. Some are simple transformation
operations such as moving or rotating shapes, other are more complex, such
as unioning and subtracting one shape from another. Be aware that

Page 93 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Transform operations
Translating a shape

Translating is the act of moving a shape from one place to another. Any
shape (edge, face, cube, etc...) can be translated the same way:

</translate>
myShape = Part.makeBox(2,2,2)

myShape.translate(Base.Vector(2,0,0))

<translate>
This will move our shape "myShape" 2 units in the x direction.
Rotating a shape

To rotate a shape, you need to specify the rotation center, the axis, and the
rotation angle:

</translate>
myShape.rotate(Vector(0,0,0),Vector(0,0,1),180)

<translate>
The above code will rotate the shape 180 degrees around the Z Axis.
Generic transformations with matrixes

A matrix is a very convenient way to store transformations in the 3D world.
In a single matrix, you can set translation, rotation and scaling values to be
applied to an object. For example:

</translate>
myMat = Base.Matrix()

myMat.move(Base.Vector(2,0,0))

myMat.rotateZ(math.pi/2)

<translate>
Note: FreeCAD matrixes work in radians. Also, almost all matrix operations
that take a vector can also take 3 numbers, so those 2 lines do the same
thing:

</translate>
myMat.move(2,0,0)

myMat.move(Base.Vector(2,0,0))

<translate>
When our matrix is set, we can apply it to our shape. FreeCAD provides 2
methods to do that: transformShape() and transformGeometry(). The
difference is that with the first one, you are sure that no deformations will
occur (see "scaling a shape" below). So we can apply our transformation like
this:

</translate>
 myShape.trasformShape(myMat)

<translate>
or

</translate>
myShape.transformGeometry(myMat)

<translate>
Scaling a shape

Scaling a shape is a more dangerous operation because, unlike translation
or rotation, scaling non-uniformly (with different values for x, y and z) can
modify the structure of the shape. For example, scaling a circle with a higher

Page 94 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

value horizontally than vertically will transform it into an ellipse, which
behaves mathematically very differenty. For scaling, we can't use the
transformShape, we must use transformGeometry():

</translate>
myMat = Base.Matrix()

myMat.scale(2,1,1)

myShape=myShape.transformGeometry(myMat)

<translate>

Boolean Operations
Subtraction

Subtracting a shape from another one is called "cut" in OCC/FreeCAD jargon
and is done like this:

</translate>
cylinder = Part.makeCylinder(3,10,Base.Vector(0,0,0),Base.Vector(1,0,0))

sphere = Part.makeSphere(5,Base.Vector(5,0,0))

diff = cylinder.cut(sphere)

<translate>
Intersection

The same way, the intersection between 2 shapes is called "common" and is
done this way:

</translate>
cylinder1 = Part.makeCylinder(3,10,Base.Vector(0,0,0),Base.Vector(1,0,0))

cylinder2 = Part.makeCylinder(3,10,Base.Vector(5,0,-5),Base.Vector(0,0,1))

common = cylinder1.common(cylinder2)

<translate>
Union

Union is called "fuse" and works the same way:

</translate>
cylinder1 = Part.makeCylinder(3,10,Base.Vector(0,0,0),Base.Vector(1,0,0))

cylinder2 = Part.makeCylinder(3,10,Base.Vector(5,0,-5),Base.Vector(0,0,1))

fuse = cylinder1.fuse(cylinder2)

<translate>
Section

A Section is the intersection between a solid shape and a plane shape. It will
return an intersection curve, a compound with edges

</translate>
cylinder1 = Part.makeCylinder(3,10,Base.Vector(0,0,0),Base.Vector(1,0,0))

cylinder2 = Part.makeCylinder(3,10,Base.Vector(5,0,-5),Base.Vector(0,0,1))

section = cylinder1.section(cylinder2)

section.Wires

> []

section.Edges

> [<Edge object at 0D87CFE8>, <Edge object at 019564F8>, <Edge object at 0D998458>,

 <Edge object at 0D86DE18>, <Edge object at 0D9B8E80>, <Edge object at 012A3640>,

 <Edge object at 0D8F4BB0>]

<translate>
Extrusion

Extrusion is the act of "pushing" a flat shape in a certain direction resulting
in a solid body. Think of a circle becoming a tube by "pushing it out":

</translate>
circle = Part.makeCircle(10)

tube = circle.extrude(Base.Vector(0,0,2))

Page 95 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

<translate>
If your circle is hollow, you will obtain a hollow tube. If your circle is actually
a disc, with a filled face, you will obtain a solid cylinder:

</translate>
wire = Part.Wire(circle)

disc = Part.Face(wire)

cylinder = disc.extrude(Base.Vector(0,0,2))

<translate>

Exploring shapes
You can easily explore the topological data structure:

</translate>
import Part

b = Part.makeBox(100,100,100)

b.Wires

w = b.Wires[0]

w

w.Wires

w.Vertexes

Part.show(w)

w.Edges

e = w.Edges[0]

e.Vertexes

v = e.Vertexes[0]

v.Point

<translate>
By typing the lines above in the python interpreter, you will gain a good
understanding of the structure of Part objects. Here, our makeBox()
command created a solid shape. This solid, like all Part solids, contains
faces. Faces always contain wires, which are lists of edges that border the
face. Each face has at least one closed wire (it can have more if the face has
a hole). In the wire, we can look at each edge separately, and inside each
edge, we can see the vertexes. Straight edges have only two vertexes,
obviously.

Edge analysis

In case of an edge, which is an arbitrary curve, it's most likely you want to
do a discretization. In FreeCAD the edges are parametrized by their lengths.
That means you can walk an edge/curve by its length:

</translate>
import Part

box = Part.makeBox(100,100,100)

anEdge = box.Edges[0]

print anEdge.Length

<translate>
Now you can access a lot of properties of the edge by using the length as a
position. That means if the edge is 100mm long the start position is 0 and
the end position 100.

</translate>
anEdge.tangentAt(0.0) # tangent direction at the beginning

anEdge.valueAt(0.0) # Point at the beginning

anEdge.valueAt(100.0) # Point at the end of the edge

anEdge.derivative1At(50.0) # first derivative of the curve in the middle

anEdge.derivative2At(50.0) # second derivative of the curve in the middle

anEdge.derivative3At(50.0) # third derivative of the curve in the middle

anEdge.centerOfCurvatureAt(50) # center of the curvature for that position

anEdge.curvatureAt(50.0) # the curvature

anEdge.normalAt(50) # normal vector at that position (if defined)

<translate>

Using the selection

Page 96 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Here we see now how we can use the selection the user did in the viewer.
First of all we create a box and shows it in the viewer

</translate>
import Part

Part.show(Part.makeBox(100,100,100))

Gui.SendMsgToActiveView("ViewFit")

<translate>
Select now some faces or edges. With this script you can iterate all selected
objects and their sub elements:

</translate>
for o in Gui.Selection.getSelectionEx():

print o.ObjectName

for s in o.SubElementNames:

print "name: ",s

for s in o.SubObjects:

print "object: ",s

<translate>
Select some edges and this script will calculate the length:

</translate>
length = 0.0

for o in Gui.Selection.getSelectionEx():

for s in o.SubObjects:

length += s.Length

print "Length of the selected edges:" ,length

<translate>

Complete example: The OCC bottle
A typical example found in the OpenCasCade Technology Tutorial
(http://www.opencascade.com/doc/occt-6.9.0/overview/html/occt__tutorial.html#sec1)
is how to build a bottle. This is a good exercise for FreeCAD too. In fact, you
can follow our example below and the OCC page simultaneously, you will
understand well how OCC structures are implemented in FreeCAD. The
complete script below is also included in FreeCAD installation (inside the
Mod/Part folder) and can be called from the python interpreter by typing:

</translate>
import Part

import MakeBottle

bottle = MakeBottle.makeBottle()

Part.show(bottle)

<translate>

The complete script

Here is the complete MakeBottle script:

</translate>

Page 97 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

import Part, FreeCAD, math

from FreeCAD import Base

def makeBottle(myWidth=50.0, myHeight=70.0, myThickness=30.0):

 aPnt1=Base.Vector(-myWidth/2.,0,0)

 aPnt2=Base.Vector(-myWidth/2.,-myThickness/4.,0)

 aPnt3=Base.Vector(0,-myThickness/2.,0)

 aPnt4=Base.Vector(myWidth/2.,-myThickness/4.,0)

 aPnt5=Base.Vector(myWidth/2.,0,0)

 aArcOfCircle = Part.Arc(aPnt2,aPnt3,aPnt4)

 aSegment1=Part.Line(aPnt1,aPnt2)

 aSegment2=Part.Line(aPnt4,aPnt5)

 aEdge1=aSegment1.toShape()

 aEdge2=aArcOfCircle.toShape()

 aEdge3=aSegment2.toShape()

 aWire=Part.Wire([aEdge1,aEdge2,aEdge3])

 aTrsf=Base.Matrix()

 aTrsf.rotateZ(math.pi) # rotate around the z-axis

 aMirroredWire=aWire.transformGeometry(aTrsf)

 myWireProfile=Part.Wire([aWire,aMirroredWire])

 myFaceProfile=Part.Face(myWireProfile)

 aPrismVec=Base.Vector(0,0,myHeight)

 myBody=myFaceProfile.extrude(aPrismVec)

 myBody=myBody.makeFillet(myThickness/12.0,myBody.Edges)

 neckLocation=Base.Vector(0,0,myHeight)

 neckNormal=Base.Vector(0,0,1)

 myNeckRadius = myThickness / 4.

 myNeckHeight = myHeight / 10

 myNeck = Part.makeCylinder(myNeckRadius,myNeckHeight,neckLocation,neckNormal)

 myBody = myBody.fuse(myNeck)

 faceToRemove = 0

 zMax = -1.0

 for xp in myBody.Faces:

 try:

 surf = xp.Surface

 if type(surf) == Part.Plane:

 z = surf.Position.z

 if z > zMax:

 zMax = z

 faceToRemove = xp

 except:

 continue

 myBody = myBody.makeThickness([faceToRemove],-myThickness/50 , 1.e-3)

 return myBody

<translate>

Detailed explanation

</translate>
import Part, FreeCAD, math

from FreeCAD import Base

<translate>
We will need,of course, the Part module, but also the FreeCAD.Base module,
which contains basic FreeCAD structures like vectors and matrixes.

</translate>
def makeBottle(myWidth=50.0, myHeight=70.0, myThickness=30.0):

 aPnt1=Base.Vector(-myWidth/2.,0,0)

 aPnt2=Base.Vector(-myWidth/2.,-myThickness/4.,0)

 aPnt3=Base.Vector(0,-myThickness/2.,0)

 aPnt4=Base.Vector(myWidth/2.,-myThickness/4.,0)

 aPnt5=Base.Vector(myWidth/2.,0,0)

<translate>
Here we define our makeBottle function. This function can be called without
arguments, like we did above, in which case default values for width, height,
and thickness will be used. Then, we define a couple of points that will be
used for building our base profile.

</translate>

Page 98 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

 aArcOfCircle = Part.Arc(aPnt2,aPnt3,aPnt4)

 aSegment1=Part.Line(aPnt1,aPnt2)

 aSegment2=Part.Line(aPnt4,aPnt5)

<translate>
Here we actually define the geometry: an arc, made of 3 points, and two line
segments, made of 2 points.

</translate>
 aEdge1=aSegment1.toShape()

 aEdge2=aArcOfCircle.toShape()

 aEdge3=aSegment2.toShape()

 aWire=Part.Wire([aEdge1,aEdge2,aEdge3])

<translate>
Remember the difference between geometry and shapes? Here we build
shapes out of our construction geometry. 3 edges (edges can be straight or
curved), then a wire made of those three edges.

</translate>
 aTrsf=Base.Matrix()

 aTrsf.rotateZ(math.pi) # rotate around the z-axis

 aMirroredWire=aWire.transformGeometry(aTrsf)

 myWireProfile=Part.Wire([aWire,aMirroredWire])

<translate>
Until now we built only a half profile. Easier than building the whole profile
the same way, we can just mirror what we did, and glue both halfs together.
So we first create a matrix. A matrix is a very common way to apply
transformations to objects in the 3D world, since it can contain in one
structure all basic transformations that 3D objects can suffer (move, rotate
and scale). Here, after we create the matrix, we mirror it, and we create a
copy of our wire with that transformation matrix applied to it. We now have
two wires, and we can make a third wire out of them, since wires are
actually lists of edges.

</translate>
 myFaceProfile=Part.Face(myWireProfile)

 aPrismVec=Base.Vector(0,0,myHeight)

 myBody=myFaceProfile.extrude(aPrismVec)

 myBody=myBody.makeFillet(myThickness/12.0,myBody.Edges)

<translate>
Now that we have a closed wire, it can be turned into a face. Once we have a
face, we can extrude it. Doing so, we actually made a solid. Then we apply a
nice little fillet to our object because we care about good design, don't we?

</translate>
 neckLocation=Base.Vector(0,0,myHeight)

 neckNormal=Base.Vector(0,0,1)

 myNeckRadius = myThickness / 4.

 myNeckHeight = myHeight / 10

 myNeck = Part.makeCylinder(myNeckRadius,myNeckHeight,neckLocation,neckNormal)

<translate>
Then, the body of our bottle is made, we still need to create a neck. So we
make a new solid, with a cylinder.

</translate>
 myBody = myBody.fuse(myNeck)

<translate>
The fuse operation, which in other apps is sometimes called union, is very
powerful. It will take care of gluing what needs to be glued and remove
parts that need to be removed.

</translate>
 return myBody

Page 99 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

<translate>
Then, we return our Part solid as the result of our function. That Part solid,
like any other Part shape, can be attributed to an object in a FreeCAD
document, with:

</translate>
myObject = FreeCAD.ActiveDocument.addObject("Part::Feature","myObject")

myObject.Shape = bottle

<translate>
or, more simple:

</translate>
Part.show(bottle)

<translate>

Box pierced
Here a complete example of building a box pierced.

The construction is done side by side and when the cube is finished, it is
hollowed out of a cylinder through.

</translate>
import Draft, Part, FreeCAD, math, PartGui, FreeCADGui, PyQt4

from math import sqrt, pi, sin, cos, asin

from FreeCAD import Base

size = 10

poly = Part.makePolygon([(0,0,0), (size, 0, 0), (size, 0, size), (0, 0, size), (0, 0, 0)])

face1 = Part.Face(poly)

face2 = Part.Face(poly)

face3 = Part.Face(poly)

face4 = Part.Face(poly)

face5 = Part.Face(poly)

face6 = Part.Face(poly)

myMat = FreeCAD.Matrix()

myMat.rotateZ(math.pi/2)

face2.transformShape(myMat)

face2.translate(FreeCAD.Vector(size, 0, 0))

myMat.rotateZ(math.pi/2)

face3.transformShape(myMat)

face3.translate(FreeCAD.Vector(size, size, 0))

myMat.rotateZ(math.pi/2)

face4.transformShape(myMat)

face4.translate(FreeCAD.Vector(0, size, 0))

myMat = FreeCAD.Matrix()

myMat.rotateX(-math.pi/2)

face5.transformShape(myMat)

face6.transformShape(myMat)

face6.translate(FreeCAD.Vector(0,0,size))

myShell = Part.makeShell([face1,face2,face3,face4,face5,face6])

mySolid = Part.makeSolid(myShell)

mySolidRev = mySolid.copy()

mySolidRev.reverse()

myCyl = Part.makeCylinder(2,20)

myCyl.translate(FreeCAD.Vector(size/2, size/2, 0))

cut_part = mySolidRev.cut(myCyl)

Part.show(cut_part)

<translate>

Loading and Saving

Page 100 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Mesh Scripting (/wiki/index.php?title=Mesh_Scripting)
next: Mesh to Part > (/wiki/index.php?title=Mesh_to_Part)

There are several ways to save your work in the Part module. You can of
course save your FreeCAD document, but you can also save Part objects
directly to common CAD formats, such as BREP, IGS, STEP and STL.

Saving a shape to a file is easy. There are exportBrep(), exportIges(),
exportStl() and exportStep() methods availables for all shape objects. So,
doing:

</translate>
import Part

s = Part.makeBox(0,0,0,10,10,10)

s.exportStep("test.stp")

<translate>
this will save our box into a STEP file. To load a BREP, IGES or STEP file,
simply do the contrary:

</translate>
import Part

s = Part.Shape()

s.read("test.stp")

<translate>
To convert an .stp in .igs file simply :

</translate>
 import Part

 s = Part.Shape()

 s.read("file.stp") # incoming file igs, stp, stl, brep

 s.exportIges("file.igs") # outbound file igs

<translate>
Note that importing or opening BREP, IGES or STEP files can also be done
directly from the File -> Open or File -> Import menu, while exporting is with
File -> Export

Index
(/wiki/index.php?title=Online_Help_Toc)

< /translate>

< translate>

Converting Part objects to Meshes
Converting higher-level objects such as Part shapes (/wiki/index.php?
title=Part_Module) into simpler objects such as meshes (/wiki/index.php?
title=Mesh_Module) is a pretty simple operation, where all faces of a Part
object get triangulated. The result of that triangulation (tessellation) is then
used to construct a mesh: (let's assume our document contains one part
object)< /translate>

#let's assume our document contains one part object

import Mesh

faces = []

shape = FreeCAD.ActiveDocument.ActiveObject.Shape

triangles = shape.tessellate(1) # the number represents the precision of the tessellation)

for tri in triangles[1]:

 face = []

 for i in range(3):

 vindex = tri[i]

 face.append(triangles[0][vindex])

 faces.append(face)

m = Mesh.Mesh(faces)

Mesh.show(m)

Page 101 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

<translate> Sometimes the triangulation of certain faces offered by
OpenCascade is quite ugly. If the face has a rectangular parameter space
and doesn't contain any holes or other trimming curves you can also create
a mesh on your own: < /translate>

import Mesh

def makeMeshFromFace(u,v,face):

(a,b,c,d)=face.ParameterRange

pts=[]

for j in range(v):

for i in range(u):

s=1.0/(u-1)*(i*b+(u-1-i)*a)

t=1.0/(v-1)*(j*d+(v-1-j)*c)

pts.append(face.valueAt(s,t))

mesh=Mesh.Mesh()

for j in range(v-1):

for i in range(u-1):

mesh.addFacet(pts[u*j+i],pts[u*j+i+1],pts[u*(j+1)+i])

mesh.addFacet(pts[u*(j+1)+i],pts[u*j+i+1],pts[u*(j+1)+i+1])

return mesh

<translate>

Converting Meshes to Part objects
Converting Meshes to Part objects is an extremely important operation in
CAD work, because very often you receive 3D data in mesh format from
other people or outputted from other applications. Meshes are very
practical to represent free-form geometry and big visual scenes, as it is very
lightweight, but for CAD we generally prefer higher-level objects that carry
much more information, such as the idea of solid, or faces made of curves
instead of triangles.

Converting meshes to those higher-level objects (handled by the Part
Module (/wiki/index.php?title=Part_Module) in FreeCAD) is not an easy
operation. Meshes can be made of thousands of triangles (for example
when generated by a 3D scanner), and having solids made of the same
number of faces would be extremely heavy to manipulate. So you generally
want to optimize the object when converting.

FreeCAD currently offers two methods to convert Meshes to Part objects.
The first method is a simple, direct conversion, without any
optimization:< /translate>

import Mesh,Part

mesh = Mesh.createTorus()

shape = Part.Shape()

shape.makeShapeFromMesh(mesh.Topology,0.05) # the second arg is the tolerance for sewing

solid = Part.makeSolid(shape)

Part.show(solid)

<translate> The second method offers the possibility to consider mesh
facets coplanar when the angle between them is under a certain value. This
allows to build much simpler shapes: (let's assume our document contains
one Mesh object) < /translate>

Page 102 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Topological data scripting (/wiki/index.php?
title=Topological_data_scripting)

next: Scenegraph > (/wiki/index.php?title=Scenegraph)

let's assume our document contains one Mesh object

import Mesh,Part,MeshPart

faces = []

mesh = App.ActiveDocument.ActiveObject.Mesh

segments = mesh.getPlanes(0.00001) # use rather strict tolerance here

for i in segments:

 if len(i) > 0:

 # a segment can have inner holes

 wires = MeshPart.wireFromSegment(mesh, i)

 # we assume that the exterior boundary is that one with the biggest bounding box

 if len(wires) > 0:

 ext=None

 max_length=0

 for i in wires:

 if i.BoundBox.DiagonalLength > max_length:

 max_length = i.BoundBox.DiagonalLength

 ext = i

 wires.remove(ext)

 # all interior wires mark a hole and must reverse their orientation, otherwise Part.Fa

ce fails

 for i in wires:

 i.reverse()

 # make sure that the exterior wires comes as first in the lsit

 wires.insert(0, ext)

 faces.append(Part.Face(wires))

shell=Part.Compound(faces)

Part.show(shell)

#solid = Part.Solid(Part.Shell(faces))

#Part.show(solid)

<translate>

Index
(/wiki/index.php?title=Online_Help_Toc)

</translate>

< translate> FreeCAD is basically a collage of different powerful libraries, the
most important being openCascade
(http://en.wikipedia.org/wiki/Open_CASCADE), for managing and
constructing geometry, Coin3d (http://en.wikipedia.org/wiki/Coin3D) to
display that geometry, and Qt (http://en.wikipedia.org/wiki/Qt_(toolkit)) to
put all this in a nice Graphical User Interface.

The geometry that appears in the 3D views of FreeCAD are rendered by the
Coin3D library. Coin3D is an implementation of the OpenInventor
(http://en.wikipedia.org/wiki/Open_Inventor) standard. The openCascade
software also provides the same functionality, but it was decided, at the
very beginnings of FreeCAD, not to use the built-in openCascade viewer and
rather switch to the more performant coin3D software. A good way to learn
about that library is the book Open Inventor Mentor (http://www-
evasion.imag.fr/Membres/Francois.Faure/doc/inventorMentor/sgi_html/).

OpenInventor (http://en.wikipedia.org/wiki/Open_Inventor) is actually a 3D
scene description language. The scene described in openInventor is then
rendered in OpenGL on your screen. Coin3D takes care of doing this, so the
programmer doesn't need to deal with complex openGL calls, he just has to
provide it with valid OpenInventor code. The big advantage is that
openInventor is a very well-known and well documented standard.

One of the big jobs FreeCAD does for you is basically to translate
openCascade geometry information into openInventor language.

OpenInventor describes a 3D scene in the form of a scenegraph
(http://en.wikipedia.org/wiki/Scene_graph), like the one below:

Page 103 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

 (/wiki/index.php?

title=File:Scenegraph.gif) image from Inventor mentor (http://www-
evasion.imag.fr/~Francois.Faure/doc/inventorMentor/sgi_html/index.html)

An openInventor scenegraph describes everything that makes part of a 3D
scene, such as geometry, colors, materials, lights, etc, and organizes all that
data in a convenient and clear structure. Everything can be grouped into
sub-structures, allowing you to organize your scene contents pretty much
the way you like. Here is an example of an openInventor file:< /translate>

#Inventor V2.0 ascii

Separator {

 RotationXYZ {

 axis Z

 angle 0

 }

 Transform {

 translation 0 0 0.5

 }

 Separator {

 Material {

 diffuseColor 0.05 0.05 0.05

 }

 Transform {

 rotation 1 0 0 1.5708

 scaleFactor 0.2 0.5 0.2

 }

 Cylinder {

 }

 }

}

<translate>

As you can see, the structure is very simple. You use separators to organize
your data into blocks, a bit like you would organize your files into folders.
Each statement affects what comes next, for example the first two items of
our root separator are a rotation and a translation, both will affect the next
item, which is a separator. In that separator, a material is defined, and
another transformation. Our cylinder will therefore be affected by both
transformations, the one who was applied directly to it and the one that was
applied to its parent separator.

We also have many other types of elements to organize our scene, such as
groups, switches or annotations. We can define very complex materials for
our objects, with color, textures, shading modes and transparency. We can
also define lights, cameras, and even movement. It is even possible to
embed pieces of scripting in openInventor files, to define more complex
behaviours.

If you are interested in learning more about openInventor, head directly to
its most famous reference, the Inventor mentor (http://www-
evasion.imag.fr/~Francois.Faure/doc/inventorMentor/sgi_html/index.html).

Page 104 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Mesh to Part (/wiki/index.php?title=Mesh_to_Part)
next: Pivy > (/wiki/index.php?title=Pivy)

In FreeCAD, normally, we don't need to interact directly with the
openInventor scenegraph. Every object in a FreeCAD document, being a
mesh, a part shape or anything else, gets automatically converted to
openInventor code and inserted in the main scenegraph that you see in a 3D
view. That scenegraph gets updated continuously when you do
modifications, add or remove objects to the document. In fact, every object
(in App space) has a view provider (a corresponding object in Gui space),
responsible for issuing openInventor code.

But there are many advantages to be able to access the scenegraph directly.
For example, we can temporarily change the appearence of an object, or we
can add objects to the scene that have no real existence in the FreeCAD
document, such as construction geometry, helpers, graphical hints or tools
such as manipulators or on-screen information.

FreeCAD itself features several tools to see or modify openInventor code.
For example, the following python code will show the openInventor
representation of a selected object:< /translate>

obj = FreeCAD.ActiveDocument.ActiveObject

viewprovider = obj.ViewObject

print viewprovider.toString()

<translate> But we also have a python module that allows complete access
to anything managed by Coin3D, such as our FreeCAD scenegraph. So, read
on to Pivy (/wiki/index.php?title=Pivy).

Index (/wiki/index.php?
title=Online_Help_Toc)

</translate>

< translate> Pivy (http://pivy.coin3d.org/) is a python binding library for
Coin3d (http://www.coin3d.org), the 3D-rendering library used FreeCAD.
When imported in a running python interpreter, it allows to dialog directly
with any running Coin3d scenegraphs (/wiki/index.php?title=Scenegraph),
such as the FreeCAD 3D views, or even to create new ones. Pivy is bundled in
standard FreeCAD installation.

The coin library is divided into several pieces, coin itself, for manipulating
scenegraphs and bindings for several GUI systems, such as windows or, like
in our case, qt. Those modules are available to pivy too, depending if they
are present on the system. The coin module is always present, and it is what
we will use anyway, since we won't need to care about anchoring our 3D
display in any interface, it is already done by FreeCAD itself. All we need to
do is this:< /translate>

from pivy import coin

<translate>

Accessing and modifying the scenegraph
We saw in the Scenegraph (/wiki/index.php?title=Scenegraph) page how a
typical Coin scene is organized. Everything that appears in a FreeCAD 3D
view is a coin scenegraph, organized the same way. We have one root node,
and all objects on the screen are its children.

FreeCAD has an easy way to access the root node of a 3D view
scenegraph:< /translate>

sg = FreeCADGui.ActiveDocument.ActiveView.getSceneGraph()

print sg

<translate> This will return the root node:< /translate>

<pivy.coin.SoSelection; proxy of <Swig Object of type 'SoSelection *' at 0x360cb60> >

<translate> We can inspect the immediate children of our

Page 105 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

scene:< /translate>

for node in sg.getChildren():

 print node

<translate> Some of those nodes, such as SoSeparators or SoGroups, can
have children themselves. The complete list of the available coin objects
can be found in the official coin documentation
(http://doc.coin3d.org/Coin/classes.html).

Let's try to add something to our scenegraph now. We'll add a nice red
cube:< /translate>

col = coin.SoBaseColor()

col.rgb=(1,0,0)

cub = coin.SoCube()

myCustomNode = coin.SoSeparator()

myCustomNode.addChild(col)

myCustomNode.addChild(cub)

sg.addChild(myCustomNode)

<translate> and here is our (nice) red cube. Now, let's try this:< /translate>

col.rgb=(1,1,0)

<translate> See? everything is still accessible and modifiable on-the-fly. No
need to recompute or redraw anything, coin takes care of everything. You
can add stuff to your scenegraph, change properties, hide stuff, show
temporary objects, anything. Of course, this only concerns the display in the
3D view. That display gets recomputed by FreeCAD on file open, and when
an object needs recomputing. So, if you change the aspect of an existing
FreeCAD object, those changes will be lost if the object gets recomputed or
when you reopen the file.

A key to work with scenegraphs in your scripts is to be able to access certain
properties of the nodes you added when needed. For example, if we wanted
to move our cube, we would have added a SoTranslation node to our
custom node, and it would have looked like this:< /translate>

col = coin.SoBaseColor()

col.rgb=(1,0,0)

trans = coin.SoTranslation()

trans.translation.setValue([0,0,0])

cub = coin.SoCube()

myCustomNode = coin.SoSeparator()

myCustomNode.addChild(col)

mtCustomNode.addChild(trans)

myCustomNode.addChild(cub)

sg.addChild(myCustomNode)

<translate> Remember that in an openInventor scenegraph, the order is
important. A node affects what comes next, so you can say something like:
color red, cube, color yellow, sphere, and you will get a red cube and a
yellow sphere. If we added the translation now to our existing custom node,
it would come after the cube, and not affect it. If we had inserted it when
creating it, like here above, we could now do:< /translate>

trans.translation.setValue([2,0,0])

<translate> And our cube would jump 2 units to the right. Finally, removing
something is done with:< /translate>

sg.removeChild(myCustomNode)

<translate>

Using callback mechanisms
A callback mechanism (http://en.wikipedia.org/wiki/Callback_%
28computer_science%29) is a system that permits a library that you are
using, such as our coin library, to call you back, that is, to call a certain
function from your currently running python object. This is extremely useful,

Page 106 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Scenegraph (/wiki/index.php?title=Scenegraph)
next: PySide > (/wiki/index.php?title=PySide)

because that way coin can notify you if some specific event occurs in the
scene. Coin can watch very different things, such as mouse position, clicks of
a mouse button, keyboard keys being pressed, and many other things.

FreeCAD features an easy way to use such callbacks:< /translate>

class ButtonTest:

 def __init__(self):

 self.view = FreeCADGui.ActiveDocument.ActiveView

 self.callback = self.view.addEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),self.ge

tMouseClick)

 def getMouseClick(self,event_cb):

 event = event_cb.getEvent()

 if event.getState() == SoMouseButtonEvent.DOWN:

 print "Alert!!! A mouse button has been improperly clicked!!!"

 self.view.removeEventCallbackSWIG(SoMouseButtonEvent.getClassTypeId(),self.callback)

ButtonTest()

<translate> The callback has to be initiated from an object, because that
object must still be running when the callback will occur. See also a
complete list (/wiki/index.php?
title=Code_snippets#Observing_mouse_events_in_the_3D_viewer_via_Python)
of possible events and their parameters, or the official coin documentation
(http://doc.coin3d.org/Coin/classes.html).

Documentation
Unfortunately pivy itself still doesn't have a proper documentation, but
since it is an accurate translation of coin, you can safely use the coin
documentation as reference, and use python style instead of c++ style (for
example SoFile::getClassTypeId() would in pivy be SoFile.getClassId())

Index
(/wiki/index.php?

title=Online_Help_Toc)
</translate>

< translate>

PySide
PySide (http://en.wikipedia.org/wiki/PySide) is a Python binding of the
cross-platform GUI toolkit Qt. FreeCAD uses PySide for all GUI (Graphic User
Intercase) purposes. PySide evolved from the PyQt package which was
previously used by FreeCAD for it's GUI. See Differences Between PySide and
PyQt (http://qt-project.org/wiki/Differences_Between_PySide_and_PyQt)
for more information on the differences.

Users of FreeCAD often achieve everything using the built-in interface. But
for users who want to customise their operations then the Python interface
exists which is documented in the Python Scripting Tutorial
(/wiki/index.php?title=Python_scripting_tutorial). The Python interface for
FreeCAD had great flexibility and power. For it's user interaction Python with
FreeCAD uses PySide, which is what is documented on this page.

Python offers the 'print' statement which gives the code:< /translate>

print 'Hello World'

<translate> With Python's print statement you have only limited control of
the appearance and behaviour. PySide supplies the missing control and also
handles environments (such as the FreeCAD macro file environment) where
the built-in facilities of Python are not enough.

PySide's abilities range from:

Page 107 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Pivy (/wiki/index.php?title=Pivy)
next: Scripted objects > (/wiki/index.php?title=Scripted_objects)

 (/wiki/index.php?

title=File:PySideScreenSnapshot1.jpg)

to:

 (/wiki/index.php?

title=File:PySideScreenSnapshot2.jpg)

PySide is described in the following 3 pages which should follow on one
from each other:

◾ Beginner PySide Examples (/wiki/index.php?
title=PySide_Beginner_Examples) (Hello World, announcements, enter
text, enter number)

◾ Medium PySide Examples (/wiki/index.php?
title=PySide_Medium_Examples) (window sizing, hiding widgets, popup
menus, mouse position, mouse events)

◾ Advanced PySide Examples (/wiki/index.php?
title=PySide_Advanced_Examples) (widgets etc.)

They divide the subject matter into 3 parts, differentiated by level of
exposure to PySide, Python and the FreeCAD internals. The first page has
overview and background material giving a description of PySide and how it
is put together while the second and third pages are mostly code examples
at different levels.

The intention is that the associated pages will provide simple Python code
to run PySide so that the user working on a problem can easily copy the
code, paste it into their own work, adapt it as necessary and return to their
problem solving with FreeCAD. Hopefully they don't have to go chasing off
across the internet looking for answers to PySide questions. At the same
time this page is not intended to replace the various comprehensive PySide
tutorials and reference sites available on the web.

Index

(/wiki/index.php?title=Online_Help_Toc)
</translate>

Besides the standard object types such as annotations, meshes and parts
objects, FreeCAD also offers the amazing possibility to build 100% python-
scripted objects, called Python Features. Those objects will behave exactly
as any other FreeCAD object, and are saved and restored automatically on
file save/load.

One particularity must be understood, those objects are saved in FreeCAD
FcStd files with python's json (http://docs.python.org/2/library/json.html)
module. That module turns a python object as a string, allowing it to be
added to the saved file. On load, the json module uses that string to

Page 108 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

recreate the original object, provided it has access to the source code that
created the object. This means that if you save such a custom object and
open it on a machine where the python code that generated the object is
not present, the object won't be recreated. If you distribute such objects to
others, you will need to distribute the python script that created it together.

Python Features follow the same rule as all FreeCAD features: they are
separated into App and GUI parts. The app part, the Document Object,
defines the geometry of our object, while its GUI part, the View Provider
Object, defines how the object will be drawn on screen. The View Provider
Object, as any other FreeCAD feature, is only available when you run
FreeCAD in its own GUI. There are several properties and methods available
to build your object. Properties must be of any of the predefined properties
types that FreeCAD offers, and will appear in the property view window, so
they can be edited by the user. This way, FeaturePython objects are truly
and totally parametric. you can define properties for the Object and its
ViewObject separately.

Hint: In former versions we used Python's cPickle
(http://docs.python.org/release/2.5/lib/module-cPickle.html) module.
However, this module executes arbitrary code and thus causes a security
problem. Thus, we moved to Python's json module.

Basic example
The following sample can be found in the
src/Mod/TemplatePyMod/FeaturePython.py
(https://github.com/FreeCAD/FreeCAD/blob/master/src/Mod/TemplatePyMod/FeaturePython.py)
file, together with several other examples:

Page 109 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

'''Examples for a feature class and its view provider.'''

import FreeCAD, FreeCADGui

from pivy import coin

class Box:

 def __init__(self, obj):

 '''Add some custom properties to our box feature'''

 obj.addProperty("App::PropertyLength","Length","Box","Length of the box").Length=1.0

 obj.addProperty("App::PropertyLength","Width","Box","Width of the box").Width=1.0

 obj.addProperty("App::PropertyLength","Height","Box", "Height of the box").Height=1.0

 obj.Proxy = self

 def onChanged(self, fp, prop):

 '''Do something when a property has changed'''

 FreeCAD.Console.PrintMessage("Change property: " + str(prop) + "\n")

 def execute(self, fp):

 '''Do something when doing a recomputation, this method is mandatory'''

 FreeCAD.Console.PrintMessage("Recompute Python Box feature\n")

class ViewProviderBox:

 def __init__(self, obj):

 '''Set this object to the proxy object of the actual view provider'''

 obj.addProperty("App::PropertyColor","Color","Box","Color of the box").Color=(1.0,0.0,

0.0)

 obj.Proxy = self

 def attach(self, obj):

 '''Setup the scene sub-graph of the view provider, this method is mandatory'''

 self.shaded = coin.SoGroup()

 self.wireframe = coin.SoGroup()

 self.scale = coin.SoScale()

 self.color = coin.SoBaseColor()

 data=coin.SoCube()

 self.shaded.addChild(self.scale)

 self.shaded.addChild(self.color)

 self.shaded.addChild(data)

 obj.addDisplayMode(self.shaded,"Shaded");

 style=coin.SoDrawStyle()

 style.style = coin.SoDrawStyle.LINES

 self.wireframe.addChild(style)

 self.wireframe.addChild(self.scale)

 self.wireframe.addChild(self.color)

 self.wireframe.addChild(data)

 obj.addDisplayMode(self.wireframe,"Wireframe");

 self.onChanged(obj,"Color")

 def updateData(self, fp, prop):

 '''If a property of the handled feature has changed we have the chance to handle this

here'''

 # fp is the handled feature, prop is the name of the property that has changed

 l = fp.getPropertyByName("Length")

 w = fp.getPropertyByName("Width")

 h = fp.getPropertyByName("Height")

 self.scale.scaleFactor.setValue(float(l),float(w),float(h))

 pass

 def getDisplayModes(self,obj):

 '''Return a list of display modes.'''

 modes=[]

 modes.append("Shaded")

 modes.append("Wireframe")

 return modes

 def getDefaultDisplayMode(self):

 '''Return the name of the default display mode. It must be defined in getDisplayModes.

'''

 return "Shaded"

 def setDisplayMode(self,mode):

 '''Map the display mode defined in attach with those defined in getDisplayModes.\

 Since they have the same names nothing needs to be done. This method is option

al'''

 return mode

 def onChanged(self, vp, prop):

 '''Here we can do something when a single property got changed'''

 FreeCAD.Console.PrintMessage("Change property: " + str(prop) + "\n")

 if prop == "Color":

 c = vp.getPropertyByName("Color")

 self.color.rgb.setValue(c[0],c[1],c[2])

 def getIcon(self):

 '''Return the icon in XPM format which will appear in the tree view. This method is\

 optional and if not defined a default icon is shown.'''

Page 110 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

 return """

 /* XPM */

 static const char * ViewProviderBox_xpm[] = {

 "16 16 6 1",

 " c None",

 ". c #141010",

 "+ c #615BD2",

 "@ c #C39D55",

 "# c #000000",

 "$ c #57C355",

 " ",

 " ++..+..",

 " .@@@@.++..++.",

 " .@@@@.++..++.",

 " .@@ .++++++.",

 " ..@@ .++..++.",

 "###@@@@ .++..++.",

 "##$.@@$#.++++++.",

 "#$#$.$$$........",

 "#$$####### ",

 "#$$#$$$$$# ",

 "#$$#$$$$$# ",

 "#$$#$$$$$# ",

 " #$#$$$$$# ",

 " ##$$$$$# ",

 " ####### "};

 """

 def __getstate__(self):

 '''When saving the document this object gets stored using Python's json module.\

 Since we have some un-serializable parts here -- the Coin stuff -- we must def

ine this method\

 to return a tuple of all serializable objects or None.'''

 return None

 def __setstate__(self,state):

 '''When restoring the serialized object from document we have the chance to set some i

nternals here.\

 Since no data were serialized nothing needs to be done here.'''

 return None

def makeBox():

 FreeCAD.newDocument()

 a=FreeCAD.ActiveDocument.addObject("App::FeaturePython","Box")

 Box(a)

 ViewProviderBox(a.ViewObject)

makeBox()

Available properties
Properties are the true building stones of FeaturePython objects. Through
them, the user will be able to interact and modify your object. After creating
a new FeaturePython object in your document
(obj=FreeCAD.ActiveDocument.addObject("App::FeaturePython","Box")), you
can get a list of the available properties by issuing:

obj.supportedProperties()

You will get a list of available properties:

Page 111 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

App::PropertyBool

App::PropertyBoolList

App::PropertyFloat

App::PropertyFloatList

App::PropertyFloatConstraint

App::PropertyQuantity

App::PropertyQuantityConstraint

App::PropertyAngle

App::PropertyDistance

App::PropertyLength

App::PropertySpeed

App::PropertyAcceleration

App::PropertyForce

App::PropertyPressure

App::PropertyInteger

App::PropertyIntegerConstraint

App::PropertyPercent

App::PropertyEnumeration

App::PropertyIntegerList

App::PropertyIntegerSet

App::PropertyMap

App::PropertyString

App::PropertyUUID

App::PropertyFont

App::PropertyStringList

App::PropertyLink

App::PropertyLinkSub

App::PropertyLinkList

App::PropertyLinkSubList

App::PropertyMatrix

App::PropertyVector

App::PropertyVectorList

App::PropertyPlacement

App::PropertyPlacementLink

App::PropertyColor

App::PropertyColorList

App::PropertyMaterial

App::PropertyPath

App::PropertyFile

App::PropertyFileIncluded

App::PropertyPythonObject

Part::PropertyPartShape

Part::PropertyGeometryList

Part::PropertyShapeHistory

Part::PropertyFilletEdges

Sketcher::PropertyConstraintList

When adding properties to your custom objects, take care of this:

◾ Do not use characters "<" or ">" in the properties descriptions (that
would break the xml pieces in the .fcstd file)

◾ Properties are stored alphabetically in a .fcstd file. If you have a shape
in your properties, any property whose name comes after "Shape" in
alphabetic order, will be loaded AFTER the shape, which can cause
strange behaviours.

Property Type
By default the properties can be updated. It is possible to make the
properties read-only, for instance in the case one wants to show the result
of a method. It is also possible to hide the property. The property type can
be set using

obj.setEditorMode("MyPropertyName", mode)

where mode is a short int that can be set to:

 0 -- default mode, read and write

 1 -- read-only

 2 -- hidden

The EditorModes are not set at FreeCAD file reload. This could to be done by
the __setstate__ function. See http://forum.freecadweb.org/viewtopic.php?
f=18&t=13460&start=10#p108072
(http://forum.freecadweb.org/viewtopic.php?
f=18&t=13460&start=10#p108072). By using the setEditorMode the properties
are only read only in PropertyEditor. They could still be changed from

Page 112 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

python. To really make them read only the setting has to be passed directly
inside the addProperty function. See
http://forum.freecadweb.org/viewtopic.php?
f=18&t=13460&start=20#p109709
(http://forum.freecadweb.org/viewtopic.php?
f=18&t=13460&start=20#p109709) for an example.

Other more complex example
This example makes use of the Part Module (/wiki/index.php?
title=Part_Module) to create an octahedron, then creates its coin
representation with pivy.

First is the Document object itself:

import FreeCAD, FreeCADGui, Part

import pivy

from pivy import coin

class Octahedron:

 def __init__(self, obj):

 "Add some custom properties to our box feature"

 obj.addProperty("App::PropertyLength","Length","Octahedron","Length of the octahedron").L

ength=1.0

 obj.addProperty("App::PropertyLength","Width","Octahedron","Width of the octahedron").Wid

th=1.0

 obj.addProperty("App::PropertyLength","Height","Octahedron", "Height of the octahedron").

Height=1.0

 obj.addProperty("Part::PropertyPartShape","Shape","Octahedron", "Shape of the octahedron"

)

 obj.Proxy = self

 def execute(self, fp):

 # Define six vetices for the shape

 v1 = FreeCAD.Vector(0,0,0)

 v2 = FreeCAD.Vector(fp.Length,0,0)

 v3 = FreeCAD.Vector(0,fp.Width,0)

 v4 = FreeCAD.Vector(fp.Length,fp.Width,0)

 v5 = FreeCAD.Vector(fp.Length/2,fp.Width/2,fp.Height/2)

 v6 = FreeCAD.Vector(fp.Length/2,fp.Width/2,-fp.Height/2)

 # Make the wires/faces

 f1 = self.make_face(v1,v2,v5)

 f2 = self.make_face(v2,v4,v5)

 f3 = self.make_face(v4,v3,v5)

 f4 = self.make_face(v3,v1,v5)

 f5 = self.make_face(v2,v1,v6)

 f6 = self.make_face(v4,v2,v6)

 f7 = self.make_face(v3,v4,v6)

 f8 = self.make_face(v1,v3,v6)

 shell=Part.makeShell([f1,f2,f3,f4,f5,f6,f7,f8])

 solid=Part.makeSolid(shell)

 fp.Shape = solid

 # helper mehod to create the faces

 def make_face(self,v1,v2,v3):

 wire = Part.makePolygon([v1,v2,v3,v1])

 face = Part.Face(wire)

 return face

Then, we have the view provider object, responsible for showing the object
in the 3D scene:

Page 113 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

class ViewProviderOctahedron:

 def __init__(self, obj):

 "Set this object to the proxy object of the actual view provider"

 obj.addProperty("App::PropertyColor","Color","Octahedron","Color of the octahedron").Colo

r=(1.0,0.0,0.0)

 obj.Proxy = self

 def attach(self, obj):

 "Setup the scene sub-graph of the view provider, this method is mandatory"

 self.shaded = coin.SoGroup()

 self.wireframe = coin.SoGroup()

 self.scale = coin.SoScale()

 self.color = coin.SoBaseColor()

 self.data=coin.SoCoordinate3()

 self.face=coin.SoIndexedLineSet()

 self.shaded.addChild(self.scale)

 self.shaded.addChild(self.color)

 self.shaded.addChild(self.data)

 self.shaded.addChild(self.face)

 obj.addDisplayMode(self.shaded,"Shaded");

 style=coin.SoDrawStyle()

 style.style = coin.SoDrawStyle.LINES

 self.wireframe.addChild(style)

 self.wireframe.addChild(self.scale)

 self.wireframe.addChild(self.color)

 self.wireframe.addChild(self.data)

 self.wireframe.addChild(self.face)

 obj.addDisplayMode(self.wireframe,"Wireframe");

 self.onChanged(obj,"Color")

 def updateData(self, fp, prop):

 "If a property of the handled feature has changed we have the chance to handle this here"

 # fp is the handled feature, prop is the name of the property that has changed

 if prop == "Shape":

 s = fp.getPropertyByName("Shape")

 self.data.point.setNum(6)

 cnt=0

 for i in s.Vertexes:

 self.data.point.set1Value(cnt,i.X,i.Y,i.Z)

 cnt=cnt+1

 self.face.coordIndex.set1Value(0,0)

 self.face.coordIndex.set1Value(1,1)

 self.face.coordIndex.set1Value(2,2)

 self.face.coordIndex.set1Value(3,-1)

 self.face.coordIndex.set1Value(4,1)

 self.face.coordIndex.set1Value(5,3)

 self.face.coordIndex.set1Value(6,2)

 self.face.coordIndex.set1Value(7,-1)

 self.face.coordIndex.set1Value(8,3)

 self.face.coordIndex.set1Value(9,4)

 self.face.coordIndex.set1Value(10,2)

 self.face.coordIndex.set1Value(11,-1)

 self.face.coordIndex.set1Value(12,4)

 self.face.coordIndex.set1Value(13,0)

 self.face.coordIndex.set1Value(14,2)

 self.face.coordIndex.set1Value(15,-1)

 self.face.coordIndex.set1Value(16,1)

 self.face.coordIndex.set1Value(17,0)

 self.face.coordIndex.set1Value(18,5)

 self.face.coordIndex.set1Value(19,-1)

 self.face.coordIndex.set1Value(20,3)

 self.face.coordIndex.set1Value(21,1)

 self.face.coordIndex.set1Value(22,5)

 self.face.coordIndex.set1Value(23,-1)

 self.face.coordIndex.set1Value(24,4)

 self.face.coordIndex.set1Value(25,3)

 self.face.coordIndex.set1Value(26,5)

 self.face.coordIndex.set1Value(27,-1)

 self.face.coordIndex.set1Value(28,0)

 self.face.coordIndex.set1Value(29,4)

 self.face.coordIndex.set1Value(30,5)

 self.face.coordIndex.set1Value(31,-1)

 def getDisplayModes(self,obj):

 "Return a list of display modes."

 modes=[]

 modes.append("Shaded")

Page 114 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

 modes.append("Wireframe")

 return modes

 def getDefaultDisplayMode(self):

 "Return the name of the default display mode. It must be defined in getDisplayModes."

 return "Shaded"

 def setDisplayMode(self,mode):

 return mode

 def onChanged(self, vp, prop):

 "Here we can do something when a single property got changed"

 FreeCAD.Console.PrintMessage("Change property: " + str(prop) + "\n")

 if prop == "Color":

 c = vp.getPropertyByName("Color")

 self.color.rgb.setValue(c[0],c[1],c[2])

 def getIcon(self):

 return """

 /* XPM */

 static const char * ViewProviderBox_xpm[] = {

 "16 16 6 1",

 " c None",

 ". c #141010",

 "+ c #615BD2",

 "@ c #C39D55",

 "# c #000000",

 "$ c #57C355",

 " ",

 " ++..+..",

 " .@@@@.++..++.",

 " .@@@@.++..++.",

 " .@@ .++++++.",

 " ..@@ .++..++.",

 "###@@@@ .++..++.",

 "##$.@@$#.++++++.",

 "#$#$.$$$........",

 "#$$####### ",

 "#$$#$$$$$# ",

 "#$$#$$$$$# ",

 "#$$#$$$$$# ",

 " #$#$$$$$# ",

 " ##$$$$$# ",

 " ####### "};

 """

 def __getstate__(self):

 return None

 def __setstate__(self,state):

 return None

Finally, once our object and its viewobject are defined, we just need to call
them:

FreeCAD.newDocument()

a=FreeCAD.ActiveDocument.addObject("App::FeaturePython","Octahedron")

Octahedron(a)

ViewProviderOctahedron(a.ViewObject)

Making objects selectable
If you want to make your object selectable, or at least part of it, by clicking
on it in the viewport, you must include its coin geometry inside a
SoFCSelection node. If your object has complex representation, with
widgets, annotations, etc, you might want to include only a part of it in a
SoFCSelection. Everything that is a SoFCSelection is constantly scanned by
FreeCAD to detect selection/preselection, so it makes sense try not to
overload it with unneeded scanning. This is what you would do to include a
self.face from the example above:

selectionNode = coin.SoType.fromName("SoFCSelection").createInstance()

selectionNode.documentName.setValue(FreeCAD.ActiveDocument.Name)

selectionNode.objectName.setValue(obj.Object.Name) # here obj is the ViewObject, we need its a

ssociated App Object

selectionNode.subElementName.setValue("Face")

selectNode.addChild(self.face)

...

self.shaded.addChild(selectionNode)

self.wireframe.addChild(selectionNode)

Page 115 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Simply, you create a SoFCSelection node, then you add your geometry nodes
to it, then you add it to your main node, instead of adding your geometry
nodes directly.

Working with simple shapes
If your parametric object simply outputs a shape, you don't need to use a
view provider object. The shape will be displayed using FreeCAD's standard
shape representation:

import FreeCAD as App

import FreeCADGui

import FreeCAD

import Part

class Line:

 def __init__(self, obj):

 '''"App two point properties" '''

 obj.addProperty("App::PropertyVector","p1","Line","Start point")

 obj.addProperty("App::PropertyVector","p2","Line","End point").p2=FreeCAD.Vector(1,0,0

)

 obj.Proxy = self

 def execute(self, fp):

 '''"Print a short message when doing a recomputation, this method is mandatory" '''

 fp.Shape = Part.makeLine(fp.p1,fp.p2)

a=FreeCAD.ActiveDocument.addObject("Part::FeaturePython","Line")

Line(a)

a.ViewObject.Proxy=0 # just set it to something different from None (this assignment is needed

 to run an internal notification)

FreeCAD.ActiveDocument.recompute()

Same code with use ViewProviderLine

import FreeCAD as App

import FreeCADGui

import FreeCAD

import Part

class Line:

 def __init__(self, obj):

 '''"App two point properties" '''

 obj.addProperty("App::PropertyVector","p1","Line","Start point")

 obj.addProperty("App::PropertyVector","p2","Line","End point").p2=FreeCAD.Vector(100,

0,0)

 obj.Proxy = self

 def execute(self, fp):

 '''"Print a short message when doing a recomputation, this method is mandatory" '''

 fp.Shape = Part.makeLine(fp.p1,fp.p2)

class ViewProviderLine:

 def __init__(self, obj):

 ''' Set this object to the proxy object of the actual view provider '''

 obj.Proxy = self

 def getDefaultDisplayMode(self):

 ''' Return the name of the default display mode. It must be defined in getDisplayModes.

'''

 return "Flat Lines"

a=FreeCAD.ActiveDocument.addObject("Part::FeaturePython","Line")

Line(a)

ViewProviderLine(a.ViewObject)

App.ActiveDocument.recompute()

Further informations
There are a few very interesting forum threads about scripted objects:

- http://forum.freecadweb.org/viewtopic.php?f=22&t=13740
(http://forum.freecadweb.org/viewtopic.php?f=22&t=13740)

- http://forum.freecadweb.org/viewtopic.php?t=12139
(http://forum.freecadweb.org/viewtopic.php?t=12139)

Page 116 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: PySide (/wiki/index.php?title=PySide)
next: Embedding FreeCAD > (/wiki/index.php?
title=Embedding_FreeCAD)

In addition to the examples presented here have a look at FreeCAD source
code src/Mod/TemplatePyMod/FeaturePython.py
(https://github.com/FreeCAD/FreeCAD/blob/master/src/Mod/TemplatePyMod/FeaturePython.py)
for more examples.

Index

(/wiki/index.php?title=Online_Help_Toc)

< translate> FreeCAD has the amazing ability to be importable as a python
module in other programs or in a standalone python console, together with
all its modules and components. It's even possible to import the FreeCAD
GUI as python module -- with some restrictions, however.

Using FreeCAD without GUI

One first, direct, easy and useful application you can make of this is to
import FreeCAD documents into your program. In the following example,
we'll import the Part geometry of a FreeCAD document into blender
(http://www.blender.org). Here is the complete script. I hope you'll be
impressed by its simplicity:

</translate>
FREECADPATH = '/opt/FreeCAD/lib' # path to your FreeCAD.so or FreeCAD.dll file

import Blender, sys

sys.path.append(FREECADPATH)

def import_fcstd(filename):

 try:

 import FreeCAD

 except ValueError:

 Blender.Draw.PupMenu('Error%t|FreeCAD library not found. Please check the FREECADPATH v

ariable in the import script is correct')

 else:

 scene = Blender.Scene.GetCurrent()

 import Part

 doc = FreeCAD.open(filename)

 objects = doc.Objects

 for ob in objects:

 if ob.Type[:4] == 'Part':

 shape = ob.Shape

 if shape.Faces:

 mesh = Blender.Mesh.New()

 rawdata = shape.tessellate(1)

 for v in rawdata[0]:

 mesh.verts.append((v.x,v.y,v.z))

 for f in rawdata[1]:

 mesh.faces.append.append(f)

 scene.objects.new(mesh,ob.Name)

 Blender.Redraw()

def main():

 Blender.Window.FileSelector(import_fcstd, 'IMPORT FCSTD',

 Blender.sys.makename(ext='.fcstd'))

This lets you import the script without running it

if __name__=='__main__':

 main()

<translate>
The first, important part is to make sure python will find our FreeCAD library.
Once it finds it, all FreeCAD modules such as Part, that we'll use too, will be
available automatically. So we simply take the sys.path variable, which is
where python searches for modules, and we append the FreeCAD lib path.
This modification is only temporary, and will be lost when we'll close our
python interpreter. Another way could be making a link to your FreeCAD
library in one of the python search paths. I kept the path in a constant
(FREECADPATH) so it'll be easier for another user of the script to configure it
to his own system.

Once we are sure the library is loaded (the try/except sequence), we can
now work with FreeCAD, the same way as we would inside FreeCAD's own
python interpreter. We open the FreeCAD document that is passed to us by

Page 117 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Scripted objects (/wiki/index.php?
title=Scripted_objects)

next: Code snippets > (/wiki/index.php?title=Code_snippets)

the main() function, and we make a list of its objects. Then, as we choosed
only to care about Part geometry, we check if the Type property of each
object contains "Part", then we tesselate it.

The tesselation produce a list of vertices and a list of faces defined by
vertices indexes. This is perfect, since it is exactly the same way as blender
defines meshes. So, our task is ridiculously simple, we just add both lists
contents to the verts and faces of a blender mesh. When everything is done,
we just redraw the screen, and that's it!

Of course this script is very simple (in fact I made a more advanced here
(http://yorik.orgfree.com/scripts/import_freecad.py)), you might want to
extend it, for example importing mesh objects too, or importing Part
geometry that has no faces, or import other file formats that FreeCAD can
read. You might also want to export geometry to a FreeCAD document, which
can be done the same way. You might also want to build a dialog, so the
user can choose what to import, etc... The beauty of all this actually lies in
the fact that you let FreeCAD do the ground work while presenting its results
in the program of your choice.

Using FreeCAD with GUI

From version 4.2 on Qt has the intriguing ability to embed Qt-GUI-
dependent plugins into non-Qt host applications and share the host's event
loop.

Especially, for FreeCAD this means that it can be imported from within
another application with its whole user interface where the host application
has full control over FreeCAD, then.

The whole python code to achieve that has only two lines

</translate>

import FreeCADGui

FreeCADGui.showMainWindow()

<translate>
If the host application is based on Qt then this solution should work on all
platforms which Qt supports. However, the host should link the same Qt
version as FreeCAD because otherwise you could run into unexpected
runtime errors.

For non-Qt applications, however, there are a few limitations you must be
aware of. This solution probably doesn't work together with all other
toolkits. For Windows it works as long as the host application is directly
based on Win32 or any other toolkit that internally uses the Win32 API such
as wxWidgets, MFC or WinForms. In order to get it working under X11 the
host application must link the "glib" library.

Note, for any console application this solution of course doesn't work
because there is no event loop running.

Index
(/wiki/index.php?title=Online_Help_Toc)

</translate>

This page contains examples, pieces, chunks of FreeCAD python code
collected from users experiences and discussions on the forums. Read and
use it as a start for your own scripts...

A typical InitGui.py file

Page 118 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

 (/wiki/index.php?title=File:Base_ExampleCommandModel.png) Tutorial

Topic
Python
Level
Beginner
Time to complete

Author

FreeCAD version

Example File(s)

Every module must contain, besides your main module file, an InitGui.py
file, responsible for inserting the module in the main Gui. This is an example
of a simple one.

class ScriptWorkbench (Workbench):

 MenuText = "Scripts"

 def Initialize(self):

 import Scripts # assuming Scripts.py is your module

 list = ["Script_Cmd"] # That list must contain command names, that can be defined in S

cripts.py

 self.appendToolbar("My Scripts",list)

Gui.addWorkbench(ScriptWorkbench())

A typical module file

This is an example of a main module file, containing everything your module
does. It is the Scripts.py file invoked by the previous example. You can have
all your custom commands here.

import FreeCAD, FreeCADGui

class ScriptCmd:

 def Activated(self):

 # Here your write what your ScriptCmd does...

 FreeCAD.Console.PrintMessage('Hello, World!')

 def GetResources(self):

 return {'Pixmap' : 'path_to_an_icon/myicon.png', 'MenuText': 'Short text', 'ToolTip': '

More detailed text'}

FreeCADGui.addCommand('Script_Cmd', ScriptCmd())

Import a new filetype

Making an importer for a new filetype in FreeCAD is easy. FreeCAD doesn't
consider that you import data in an opened document, but rather that you
simply can directly open the new filetype. So what you need to do is to add
the new file extension to FreeCAD's list of known extensions, and write the
code that will read the file and create the FreeCAD objects you want:

This line must be added to the InitGui.py file to add the new file extension
to the list:

Assumes Import_Ext.py is the file that has the code for opening and reading .ext files

FreeCAD.addImportType("Your new File Type (*.ext)","Import_Ext")

Then in the Import_Ext.py file:

Page 119 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

def open(filename):

 doc=App.newDocument()

 # here you do all what is needed with filename, read, classify data, create corresponding F

reeCAD objects

 doc.recompute()

To export your document to some new filetype works the same way, except
that you use:

FreeCAD.addExportType("Your new File Type (*.ext)","Export_Ext")

Adding a line

A line simply has 2 points.

import Part,PartGui

doc=App.activeDocument()

add a line element to the document and set its points

l=Part.Line()

l.StartPoint=(0.0,0.0,0.0)

l.EndPoint=(1.0,1.0,1.0)

doc.addObject("Part::Feature","Line").Shape=l.toShape()

doc.recompute()

Adding a polygon

A polygon is simply a set of connected line segments (a polyline in
AutoCAD). It doesn't need to be closed.

import Part,PartGui

doc=App.activeDocument()

n=list()

create a 3D vector, set its coordinates and add it to the list

v=App.Vector(0,0,0)

n.append(v)

v=App.Vector(10,0,0)

n.append(v)

#... repeat for all nodes

Create a polygon object and set its nodes

p=doc.addObject("Part::Polygon","Polygon")

p.Nodes=n

doc.recompute()

Adding and removing an object to a group

doc=App.activeDocument()

grp=doc.addObject("App::DocumentObjectGroup", "Group")

lin=doc.addObject("Part::Feature", "Line")

grp.addObject(lin) # adds the lin object to the group grp

grp.removeObject(lin) # removes the lin object from the group grp

Note: You can even add other groups to a group...

Adding a Mesh

import Mesh

doc=App.activeDocument()

create a new empty mesh

m = Mesh.Mesh()

build up box out of 12 facets

m.addFacet(0.0,0.0,0.0, 0.0,0.0,1.0, 0.0,1.0,1.0)

m.addFacet(0.0,0.0,0.0, 0.0,1.0,1.0, 0.0,1.0,0.0)

m.addFacet(0.0,0.0,0.0, 1.0,0.0,0.0, 1.0,0.0,1.0)

m.addFacet(0.0,0.0,0.0, 1.0,0.0,1.0, 0.0,0.0,1.0)

m.addFacet(0.0,0.0,0.0, 0.0,1.0,0.0, 1.0,1.0,0.0)

m.addFacet(0.0,0.0,0.0, 1.0,1.0,0.0, 1.0,0.0,0.0)

m.addFacet(0.0,1.0,0.0, 0.0,1.0,1.0, 1.0,1.0,1.0)

m.addFacet(0.0,1.0,0.0, 1.0,1.0,1.0, 1.0,1.0,0.0)

m.addFacet(0.0,1.0,1.0, 0.0,0.0,1.0, 1.0,0.0,1.0)

m.addFacet(0.0,1.0,1.0, 1.0,0.0,1.0, 1.0,1.0,1.0)

m.addFacet(1.0,1.0,0.0, 1.0,1.0,1.0, 1.0,0.0,1.0)

m.addFacet(1.0,1.0,0.0, 1.0,0.0,1.0, 1.0,0.0,0.0)

scale to a edge langth of 100

m.scale(100.0)

add the mesh to the active document

me=doc.addObject("Mesh::Feature","Cube")

me.Mesh=m

Page 120 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Adding an arc or a circle

import Part

doc = App.activeDocument()

c = Part.Circle()

c.Radius=10.0

f = doc.addObject("Part::Feature", "Circle") # create a document with a circle feature

f.Shape = c.toShape() # Assign the circle shape to the shape property

doc.recompute()

Accessing and changing representation of an object

Each object in a FreeCAD document has an associated view representation
object that stores all the parameters that define how the object appear, like
color, linewidth, etc...

gad=Gui.activeDocument() # access the active document containing all

 # view representations of the features in the

 # corresponding App document

v=gad.getObject("Cube") # access the view representation to the Mesh feature 'Cube'

v.ShapeColor # prints the color to the console

v.ShapeColor=(1.0,1.0,1.0) # sets the shape color to white

Observing mouse events in the 3D viewer via Python

The Inventor framework allows to add one or more callback nodes to the
scenegraph of the viewer. By default in FreeCAD one callback node is
installed per viewer which allows to add global or static C++ functions. In
the appropriate Python binding some methods are provided to make use of
this technique from within Python code.

App.newDocument()

v=Gui.activeDocument().activeView()

#This class logs any mouse button events. As the registered callback function fires twice for

'down' and

#'up' events we need a boolean flag to handle this.

class ViewObserver:

 def logPosition(self, info):

 down = (info["State"] == "DOWN")

 pos = info["Position"]

 if (down):

 FreeCAD.Console.PrintMessage("Clicked on position: ("+str(pos[0])+", "+str(pos[1])+

")\n")

o = ViewObserver()

c = v.addEventCallback("SoMouseButtonEvent",o.logPosition)

Now, pick somewhere on the area in the 3D viewer and observe the
messages in the output window. To finish the observation just call

v.removeEventCallback("SoMouseButtonEvent",c)

The following event types are supported

◾ SoEvent -- all kind of events
◾ SoButtonEvent -- all mouse button and key events
◾ SoLocation2Event -- 2D movement events (normally mouse movements)
◾ SoMotion3Event -- 3D movement events (normally spaceball)
◾ SoKeyboardEvent -- key down and up events
◾ SoMouseButtonEvent -- mouse button down and up events
◾ SoSpaceballButtonEvent -- spaceball button down and up events

The Python function that can be registered with addEventCallback() expects
a dictionary. Depending on the watched event the dictionary can contain
different keys.

For all events it has the keys:

◾ Type -- the name of the event type i.e. SoMouseEvent,
SoLocation2Event, ...

Page 121 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

◾ Time -- the current time as string
◾ Position -- a tuple of two integers, mouse position
◾ ShiftDown -- a boolean, true if Shift was pressed otherwise false
◾ CtrlDown -- a boolean, true if Ctrl was pressed otherwise false
◾ AltDown -- a boolean, true if Alt was pressed otherwise false

For all button events, i.e. keyboard, mouse or spaceball events

◾ State -- A string 'UP' if the button was up, 'DOWN' if it was down or
'UNKNOWN' for all other cases

For keyboard events:

◾ Key -- a character of the pressed key
For mouse button event

◾ Button -- The pressed button, could be BUTTON1, ..., BUTTON5 or ANY
For spaceball events:

◾ Button -- The pressed button, could be BUTTON1, ..., BUTTON7 or ANY
And finally motion events:

◾ Translation -- a tuple of three floats
◾ Rotation -- a quaternion for the rotation, i.e. a tuple of four floats

Display keys pressed and Events command

This macro displays in the report view the keys pressed and all events
command

App.newDocument()

v=Gui.activeDocument().activeView()

class ViewObserver:

 def logPosition(self, info):

 try:

 down = (info["Key"])

 FreeCAD.Console.PrintMessage(str(down)+"\n") # here the character pressed

 FreeCAD.Console.PrintMessage(str(info)+"\n") # list all events command

 FreeCAD.Console.PrintMessage("_______________________________________"+"\n")

 except Exception:

 None

o = ViewObserver()

c = v.addEventCallback("SoEvent",o.logPosition)

#v.removeEventCallback("SoEvent",c) # remove ViewObserver

Manipulate the scenegraph in Python

It is also possible to get and change the scenegraph in Python, with the
'pivy' module -- a Python binding for Coin.

from pivy.coin import * # load the pivy module

view = Gui.ActiveDocument.ActiveView # get the active viewer

root = view.getSceneGraph() # the root is an SoSeparator node

root.addChild(SoCube())

view.fitAll()

The Python API of pivy is created by using the tool SWIG. As we use in
FreeCAD some self-written nodes you cannot create them directly in Python.
However, it is possible to create a node by its internal name. An instance of
the type 'SoFCSelection' can be created with

type = SoType.fromName("SoFCSelection")

node = type.createInstance()

Adding and removing objects to/from the scenegraph

Page 122 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Adding new nodes to the scenegraph can be done this way. Take care of
always adding a SoSeparator to contain the geometry, coordinates and
material info of a same object. The following example adds a red line from
(0,0,0) to (10,0,0):

from pivy import coin

sg = Gui.ActiveDocument.ActiveView.getSceneGraph()

co = coin.SoCoordinate3()

pts = [[0,0,0],[10,0,0]]

co.point.setValues(0,len(pts),pts)

ma = coin.SoBaseColor()

ma.rgb = (1,0,0)

li = coin.SoLineSet()

li.numVertices.setValue(2)

no = coin.SoSeparator()

no.addChild(co)

no.addChild(ma)

no.addChild(li)

sg.addChild(no)

To remove it, simply issue:

sg.removeChild(no)

Adding custom widgets to the interface

You can create custom widgets with Qt designer, transform them into a
python script, and then load them into the FreeCAD interface with PyQt4.

The python code produced by the Ui python compiler (the tool that converts
qt-designer .ui files into python code) generally looks like this (it is simple,
you can also code it directly in python):

class myWidget_Ui(object):

 def setupUi(self, myWidget):

 myWidget.setObjectName("my Nice New Widget")

 myWidget.resize(QtCore.QSize(QtCore.QRect(0,0,300,100).size()).expandedTo(myWidget.minimumS

izeHint())) # sets size of the widget

 self.label = QtGui.QLabel(myWidget) # creates a label

 self.label.setGeometry(QtCore.QRect(50,50,200,24)) # sets its size

 self.label.setObjectName("label") # sets its name, so it can be found by name

 def retranslateUi(self, draftToolbar): # built-in QT function that manages translations of wi

dgets

 myWidget.setWindowTitle(QtGui.QApplication.translate("myWidget", "My Widget", None, QtGui.Q

Application.UnicodeUTF8))

 self.label.setText(QtGui.QApplication.translate("myWidget", "Welcome to my new widget!", No

ne, QtGui.QApplication.UnicodeUTF8))

Then, all you need to do is to create a reference to the FreeCAD Qt window,
insert a custom widget into it, and "transform" this widget into yours with
the Ui code we just made:

app = QtGui.qApp

FCmw = app.activeWindow() # the active qt window, = the freecad window since we are inside it

myNewFreeCADWidget = QtGui.QDockWidget() # create a new dckwidget

myNewFreeCADWidget.ui = myWidget_Ui() # load the Ui script

myNewFreeCADWidget.ui.setupUi(myNewFreeCADWidget) # setup the ui

FCmw.addDockWidget(QtCore.Qt.RightDockWidgetArea,myNewFreeCADWidget) # add the widget to the m

ain window

Adding a Tab to the Combo View

The following code allows you to add a tab to the FreeCAD ComboView,
besides the "Project" and "Tasks" tabs. It also uses the uic module to load
an ui file directly in that tab.

Page 123 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

create new Tab in ComboView

from PySide import QtGui,QtCore

#from PySide import uic

def getMainWindow():

 "returns the main window"

 # using QtGui.qApp.activeWindow() isn't very reliable because if another

 # widget than the mainwindow is active (e.g. a dialog) the wrong widget is

 # returned

 toplevel = QtGui.qApp.topLevelWidgets()

 for i in toplevel:

 if i.metaObject().className() == "Gui::MainWindow":

 return i

 raise Exception("No main window found")

def getComboView(mw):

 dw=mw.findChildren(QtGui.QDockWidget)

 for i in dw:

 if str(i.objectName()) == "Combo View":

 return i.findChild(QtGui.QTabWidget)

 elif str(i.objectName()) == "Python Console":

 return i.findChild(QtGui.QTabWidget)

 raise Exception ("No tab widget found")

mw = getMainWindow()

tab = getComboView(getMainWindow())

tab2=QtGui.QDialog()

tab.addTab(tab2,"A Special Tab")

#uic.loadUi("/myTaskPanelforTabs.ui",tab2)

tab2.show()

#tab.removeTab(2)

Enable or disable a window

from PySide import QtGui

mw=FreeCADGui.getMainWindow()

dws=mw.findChildren(QtGui.QDockWidget)

objectName may be :

"Report view"

"Tree view"

"Property view"

"Selection view"

"Combo View"

"Python console"

"draftToolbar"

for i in dws:

 if i.objectName() == "Report view":

 dw=i

 break

va=dw.toggleViewAction()

va.setChecked(True) # True or False

dw.setVisible(True) # True or False

Opening a custom webpage

import WebGui

WebGui.openBrowser("http://www.example.com")

Getting the HTML contents of an opened webpage

from PyQt4 import QtGui,QtWebKit

a = QtGui.qApp

mw = a.activeWindow()

v = mw.findChild(QtWebKit.QWebFrame)

html = unicode(v.toHtml())

print html

Retrieve and use the coordinates of 3 selected points or objects

Page 124 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

-*- coding: utf-8 -*-

the line above to put the accentuated in the remarks

If this line is missing, an error will be returned

extract and use the coordinates of 3 objects selected

import Part, FreeCAD, math, PartGui, FreeCADGui

from FreeCAD import Base, Console

sel = FreeCADGui.Selection.getSelection() # " sel " contains the items selected

if len(sel)!=3 :

 # If there are no 3 objects selected, an error is displayed in the report view

 # The \r and \n at the end of line mean return and the newline CR + LF.

 Console.PrintError("Select 3 points exactly\r\n")

else :

 points=[]

 for obj in sel:

 points.append(obj.Shape.BoundBox.Center)

 for pt in points:

 # display of the coordinates in the report view

 Console.PrintMessage(str(pt.x)+"\r\n")

 Console.PrintMessage(str(pt.y)+"\r\n")

 Console.PrintMessage(str(pt.z)+"\r\n")

 Console.PrintMessage(str(pt[1]) + "\r\n")

List all objects

-*- coding: utf-8 -*-

import FreeCAD,Draft

List all objects of the document

doc = FreeCAD.ActiveDocument

objs = FreeCAD.ActiveDocument.Objects

#App.Console.PrintMessage(str(objs) + "\n")

#App.Console.PrintMessage(str(len(FreeCAD.ActiveDocument.Objects)) + " Objects" + "\n")

for obj in objs:

 a = obj.Name # list the Name of the object (

not modifiable)

 b = obj.Label # list the Label of the object (

modifiable)

 try:

 c = obj.LabelText # list the LabeText of the text (

modifiable)

 App.Console.PrintMessage(str(a) +" "+ str(b) +" "+ str(c) + "\n") # Displays the Name

the Label and the text

 except:

 App.Console.PrintMessage(str(a) +" "+ str(b) + "\n") # Displays the Name and the Label

 of the object

#doc.removeObject("Box") # Clears the designated object

List the dimension give the name of object

for edge in FreeCAD.ActiveDocument.MyObjectName.Shape.Edges: # replace "MyObjectName" for list

 print edge.Length

Function resident with the mouse click action

Here with SelObserver on a object select

Page 125 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

-*- coding: utf-8 -*-

causes an action to the mouse click on an object

This function remains resident (in memory) with the function "addObserver(s)"

"removeObserver(s) # Uninstalls the resident function

class SelObserver:

 def addSelection(self,doc,obj,sub,pnt): # Selection object

 #def setPreselection(self,doc,obj,sub): # Preselection object

 App.Console.PrintMessage("addSelection"+ "\n")

 App.Console.PrintMessage(str(doc)+ "\n") # Name of the document

 App.Console.PrintMessage(str(obj)+ "\n") # Name of the object

 App.Console.PrintMessage(str(sub)+ "\n") # The part of the object name

 App.Console.PrintMessage(str(pnt)+ "\n") # Coordinates of the object

 App.Console.PrintMessage("______"+ "\n")

 def removeSelection(self,doc,obj,sub): # Delete the selected object

 App.Console.PrintMessage("removeSelection"+ "\n")

 def setSelection(self,doc): # Selection in ComboView

 App.Console.PrintMessage("setSelection"+ "\n")

 def clearSelection(self,doc): # If click on the screen, clear the

selection

 App.Console.PrintMessage("clearSelection"+ "\n") # If click on another object, clear

the previous object

s =SelObserver()

FreeCADGui.Selection.addObserver(s) # install the function mode resident

#FreeCADGui.Selection.removeObserver(s) # Uninstall the resident function

Other example with ViewObserver on a object select or view

App.newDocument()

v=Gui.activeDocument().activeView()

#This class logs any mouse button events. As the registered callback function fires twice for

'down' and

#'up' events we need a boolean flag to handle this.

class ViewObserver:

 def __init__(self, view):

 self.view = view

 def logPosition(self, info):

 down = (info["State"] == "DOWN")

 pos = info["Position"]

 if (down):

 FreeCAD.Console.PrintMessage("Clicked on position: ("+str(pos[0])+", "+str(pos[1])+

")\n")

 pnt = self.view.getPoint(pos)

 FreeCAD.Console.PrintMessage("World coordinates: " + str(pnt) + "\n")

 info = self.view.getObjectInfo(pos)

 FreeCAD.Console.PrintMessage("Object info: " + str(info) + "\n")

o = ViewObserver(v)

c = v.addEventCallback("SoMouseButtonEvent",o.logPosition)

List the components of an object

Page 126 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

-*- coding: utf-8 -*-

This function list the components of an object

and extract this object its XYZ coordinates,

its edges and their lengths center of mass and coordinates

its faces and their center of mass

its faces and their surfaces and coordinates

8/05/2014

import Draft,Part

def detail():

 sel = FreeCADGui.Selection.getSelection() # Select an object

 if len(sel) != 0: # If there is a selection then

 Vertx=[]

 Edges=[]

 Faces=[]

 compt_V=0

 compt_E=0

 compt_F=0

 pas =0

 perimetre = 0.0

 EdgesLong = []

 # Displays the "Name" and the "Label" of the selection

 App.Console.PrintMessage("Selection > " + str(sel[0].Name) + " " + str(sel[0].Label)

+"\n"+"\n")

 for j in enumerate(sel[0].Shape.Edges): # Search t

he "Edges" and their lengths

 compt_E+=1

 Edges.append("Edge%d" % (j[0]+1))

 EdgesLong.append(str(sel[0].Shape.Edges[compt_E-1].Length))

 perimetre += (sel[0].Shape.Edges[compt_E-1].Length) # calculat

es the perimeter

 # Displays the "Edge" and its length

 App.Console.PrintMessage("Edge"+str(compt_E)+" Length > "+str(sel[0].Shape.Edges[c

ompt_E-1].Length)+"\n")

 # Displays the "Edge" and its center mass

 App.Console.PrintMessage("Edge"+str(compt_E)+" Center > "+str(sel[0].Shape.Edges[c

ompt_E-1].CenterOfMass)+"\n")

 num = sel[0].Shape.Edges[compt_E-1].Vertexes[0]

 Vertx.append("X1: "+str(num.Point.x))

 Vertx.append("Y1: "+str(num.Point.y))

 Vertx.append("Z1: "+str(num.Point.z))

 # Displays the coordinates 1

 App.Console.PrintMessage("X1: "+str(num.Point[0])+" Y1: "+str(num.Point[1])+" Z1:

"+str(num.Point[2])+"\n")

 try:

 num = sel[0].Shape.Edges[compt_E-1].Vertexes[1]

 Vertx.append("X2: "+str(num.Point.x))

 Vertx.append("Y2: "+str(num.Point.y))

 Vertx.append("Z2: "+str(num.Point.z))

 except:

 Vertx.append("-")

 Vertx.append("-")

 Vertx.append("-")

 # Displays the coordinates 2

 App.Console.PrintMessage("X2: "+str(num.Point[0])+" Y2: "+str(num.Point[1])+" Z2:

"+str(num.Point[2])+"\n")

 App.Console.PrintMessage("\n")

 App.Console.PrintMessage("Perimeter of the form : "+str(perimetre)+"\n")

 App.Console.PrintMessage("\n")

 FacesSurf = []

 for j in enumerate(sel[0].Shape.Faces): # Search

the "Faces" and their surface

 compt_F+=1

 Faces.append("Face%d" % (j[0]+1))

 FacesSurf.append(str(sel[0].Shape.Faces[compt_F-1].Area))

 # Displays 'Face' and its surface

 App.Console.PrintMessage("Face"+str(compt_F)+" > Surface "+str(sel[0].Shape.Faces

[compt_F-1].Area)+"\n")

 # Displays 'Face' and its CenterOfMass

 App.Console.PrintMessage("Face"+str(compt_F)+" > Center "+str(sel[0].Shape.Faces

[compt_F-1].CenterOfMass)+"\n")

 # Displays 'Face' and its Coordinates

 FacesCoor = []

 fco = 0

 for f0 in sel[0].Shape.Faces[compt_F-1].Vertexes: # Search

the Vertexes of the face

Page 127 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

 fco += 1

 FacesCoor.append("X"+str(fco)+": "+str(f0.Point.x))

 FacesCoor.append("Y"+str(fco)+": "+str(f0.Point.y))

 FacesCoor.append("Z"+str(fco)+": "+str(f0.Point.z))

 # Displays 'Face' and its Coordinates

 App.Console.PrintMessage("Face"+str(compt_F)+" > Coordinate"+str(FacesCoor)+"\n")

 # Displays 'Face' and its Volume

 App.Console.PrintMessage("Face"+str(compt_F)+" > Volume "+str(sel[0].Shape.Faces

[compt_F-1].Volume)+"\n")

 App.Console.PrintMessage("\n")

 # Displays the total surface of the form

 App.Console.PrintMessage("Surface of the form : "+str(sel[0].Shape.Area)+"\n")

 # Displays the total Volume of the form

 App.Console.PrintMessage("Volume of the form : "+str(sel[0].Shape.Volume)+"\n")

detail()

List the PropertiesList

import FreeCADGui

from FreeCAD import Console

o = App.ActiveDocument.ActiveObject

op = o.PropertiesList

for p in op:

 Console.PrintMessage("Property: "+ str(p)+ " Value: " + str(o.getPropertyByName(p))+"\r\n"

)

Adding one Property "Comment"

import Draft

obj = FreeCADGui.Selection.getSelection()[0]

obj.addProperty("App::PropertyString","GComment","Draft","Font name").GComment = "Comment here

"

App.activeDocument().recompute()

Search and data extraction

Examples of research and decoding information on an object.

Each section is independently and is separated by "############" can be
copied directly into the Python console, or in a macro or use this macro. The
description of the macro in the commentary.

Displaying it in the "View Report" window (View > Views > View report)

Page 128 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

-*- coding: utf-8 -*-

from __future__ import unicode_literals

Exemples de recherche et de decodage d'informations sur un objet

Chaque section peut etre copiee directement dans la console Python ou dans une macro ou util

isez la macro tel quel

Certaines commandes se repetent seul l'approche est differente

L'affichage se fait dans la Vue rapport : Menu Affichage > Vues > Vue rapport

Examples of research and decoding information on an object

Each section can be copied directly into the Python console, or in a macro or uses this macr

o

Certain commands as repeat alone approach is different

Displayed on Report view : Menu View > Views > report view

rev:30/08/2014:29/09/2014:17/09/2015

from FreeCAD import Base

import DraftVecUtils, Draft, Part

mydoc = FreeCAD.activeDocument().Name # Name of active Doc

ument

App.Console.PrintMessage("Active docu : "+(mydoc)+"\n")

sel = FreeCADGui.Selection.getSelection() # select object with

 getSelection()

object_Label = sel[0].Label # Label of the objec

t (modifiable)

App.Console.PrintMessage("object_Label : "+(object_Label)+"\n")

sel = FreeCADGui.Selection.getSelection() # select object with

 getSelection()

App.Console.PrintMessage("sel : "+str(sel[0])+"\n\n") # sel[0] first objec

t selected

sel = FreeCADGui.Selection.getSelection() # select object with

 getSelection()

object_Name = sel[0].Name # Name of the object

 (not modifiable)

App.Console.PrintMessage("object_Name : "+str(object_Name)+"\n\n")

try:

 SubElement = FreeCADGui.Selection.getSelectionEx() # sub element name w

ith getSelectionEx()

 element_ = SubElement[0].SubElementNames[0] # name of 1 element

selected

 App.Console.PrintMessage("elementSelec : "+str(element_)+"\n\n")

except:

 App.Console.PrintMessage("Oups"+"\n\n")

sel = FreeCADGui.Selection.getSelection() # select object with

 getSelection()

App.Console.PrintMessage("sel : "+str(sel[0])+"\n\n") # sel[0] first objec

t selected

SubElement = FreeCADGui.Selection.getSelectionEx() # sub element name w

ith getSelectionEx()

App.Console.PrintMessage("SubElement : "+str(SubElement[0])+"\n\n") # name of sub elemen

t

sel = FreeCADGui.Selection.getSelection() # select object with

 getSelection()

i = 0

for j in enumerate(sel[0].Shape.Edges): # list all Edges

 i += 1

 App.Console.PrintMessage("Edges n : "+str(i)+"\n")

 a = sel[0].Shape.Edges[j[0]].Vertexes[0]

 App.Console.PrintMessage("X1 : "+str(a.Point.x)+"\n") # coordinate XYZ fir

st point

 App.Console.PrintMessage("Y1 : "+str(a.Point.y)+"\n")

 App.Console.PrintMessage("Z1 : "+str(a.Point.z)+"\n")

 try:

 a = sel[0].Shape.Edges[j[0]].Vertexes[1]

 App.Console.PrintMessage("X2 : "+str(a.Point.x)+"\n") # coordinate XYZ sec

ond point

 App.Console.PrintMessage("Y2 : "+str(a.Point.y)+"\n")

 App.Console.PrintMessage("Z2 : "+str(a.Point.z)+"\n")

 except:

 App.Console.PrintMessage("Oups"+"\n")

App.Console.PrintMessage("\n")

Page 129 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

try:

 SubElement = FreeCADGui.Selection.getSelectionEx()

sub element name with getSelectionEx()

 subElementName = Gui.Selection.getSelectionEx()[0].SubElementNames[0]

sub element name with getSelectionEx()

 App.Console.PrintMessage("subElementName : "+str(subElementName)+"\n")

 subObjectLength = Gui.Selection.getSelectionEx()[0].SubObjects[0].Length

sub element Length

 App.Console.PrintMessage("subObjectLength: "+str(subObjectLength)+"\n\n")

 subObjectX1 = Gui.Selection.getSelectionEx()[0].SubObjects[0].Vertexes[0].Point.x

sub element coordinate X1

 App.Console.PrintMessage("subObject_X1 : "+str(subObjectX1)+"\n")

 subObjectY1 = Gui.Selection.getSelectionEx()[0].SubObjects[0].Vertexes[0].Point.y

sub element coordinate Y1

 App.Console.PrintMessage("subObject_Y1 : "+str(subObjectY1)+"\n")

 subObjectZ1 = Gui.Selection.getSelectionEx()[0].SubObjects[0].Vertexes[0].Point.z

sub element coordinate Z1

 App.Console.PrintMessage("subObject_Z1 : "+str(subObjectZ1)+"\n\n")

 subObjectX2 = Gui.Selection.getSelectionEx()[0].SubObjects[0].Vertexes[1].Point.x

sub element coordinate X2

 App.Console.PrintMessage("subObject_X2 : "+str(subObjectX2)+"\n")

 subObjectY2 = Gui.Selection.getSelectionEx()[0].SubObjects[0].Vertexes[1].Point.y

sub element coordinate Y2

 App.Console.PrintMessage("subObject_Y2 : "+str(subObjectY2)+"\n")

 subObjectZ2 = Gui.Selection.getSelectionEx()[0].SubObjects[0].Vertexes[1].Point.z

sub element coordinate Z2

 App.Console.PrintMessage("subObject_Z2 : "+str(subObjectZ2)+"\n\n")

 subObjectBoundBox = Gui.Selection.getSelectionEx()[0].SubObjects[0].BoundBox

sub element BoundBox coordinates

 App.Console.PrintMessage("subObjectBBox : "+str(subObjectBoundBox)+"\n")

 subObjectBoundBoxCenter = Gui.Selection.getSelectionEx()[0].SubObjects[0].BoundBox.Center

sub element BoundBoxCenter

 App.Console.PrintMessage("subObjectBBoxCe: "+str(subObjectBoundBoxCenter)+"\n")

 surfaceFace = Gui.Selection.getSelectionEx()[0].SubObjects[0].Area

Area of the face selected

 App.Console.PrintMessage("surfaceFace : "+str(surfaceFace)+"\n\n")

except:

 App.Console.PrintMessage("Oups"+"\n\n")

sel = FreeCADGui.Selection.getSelection() # select object with

 getSelection()

surface = sel[0].Shape.Area # Area object comple

te

App.Console.PrintMessage("surfaceObjet : "+str(surface)+"\n\n")

sel = FreeCADGui.Selection.getSelection() # select object with

 getSelection()

CenterOfMass = sel[0].Shape.CenterOfMass # Center of Mass of

the object

App.Console.PrintMessage("CenterOfMass : "+str(CenterOfMass)+"\n")

App.Console.PrintMessage("CenterOfMassX : "+str(CenterOfMass[0])+"\n") # coordinates [0]=X

[1]=Y [2]=Z

App.Console.PrintMessage("CenterOfMassY : "+str(CenterOfMass[1])+"\n")

App.Console.PrintMessage("CenterOfMassZ : "+str(CenterOfMass[2])+"\n\n")

sel = FreeCADGui.Selection.getSelection() # select object with

 getSelection()

for j in enumerate(sel[0].Shape.Faces): # List alles faces o

f the object

 App.Console.PrintMessage("Face : "+str("Face%d" % (j[0]+1))+"\n")

App.Console.PrintMessage("\n\n")

sel = FreeCADGui.Selection.getSelection() # select object with

 getSelection()

volume_ = sel[0].Shape.Volume # Volume of the obje

ct

App.Console.PrintMessage("volume_ : "+str(volume_)+"\n\n")

sel = FreeCADGui.Selection.getSelection() # select object with

 getSelection()

boundBox_= sel[0].Shape.BoundBox # BoundBox of the ob

ject

App.Console.PrintMessage("boundBox_ : "+str(boundBox_)+"\n")

Page 130 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

boundBoxLX = boundBox_.XLength # Length x boundBox

rectangle

boundBoxLY = boundBox_.YLength # Length y boundBox

rectangle

boundBoxLZ = boundBox_.ZLength # Length z boundBox

rectangle

boundBoxDiag= boundBox_.DiagonalLength # Diagonal Length bo

undBox rectangle

App.Console.PrintMessage("boundBoxLX : "+str(boundBoxLX)+"\n")

App.Console.PrintMessage("boundBoxLY : "+str(boundBoxLY)+"\n")

App.Console.PrintMessage("boundBoxLZ : "+str(boundBoxLZ)+"\n")

App.Console.PrintMessage("boundBoxDiag : "+str(boundBoxDiag)+"\n\n")

sel = FreeCADGui.Selection.getSelection() # select object with

 getSelection()

pl = sel[0].Shape.Placement # Placement Vector X

YZ and Yaw-Pitch-Roll

App.Console.PrintMessage("Placement : "+str(pl)+"\n")

sel = FreeCADGui.Selection.getSelection() # select object with

 getSelection()

pl = sel[0].Shape.Placement.Base # Placement Vector X

YZ

App.Console.PrintMessage("PlacementBase : "+str(pl)+"\n\n")

sel = FreeCADGui.Selection.getSelection() # select object with

 getSelection()

Yaw = sel[0].Shape.Placement.Rotation.toEuler()[0] # decode angle Euler

 Yaw

App.Console.PrintMessage("Yaw : "+str(Yaw)+"\n")

Pitch = sel[0].Shape.Placement.Rotation.toEuler()[1] # decode angle Euler

 Pitch

App.Console.PrintMessage("Pitch : "+str(Pitch)+"\n")

Roll = sel[0].Shape.Placement.Rotation.toEuler()[2] # decode angle Euler

 Yaw

App.Console.PrintMessage("Roll : "+str(Roll)+"\n\n")

sel = FreeCADGui.Selection.getSelection() # select object with

 getSelection()

oripl_X = sel[0].Placement.Base[0] # decode Placement X

oripl_Y = sel[0].Placement.Base[1] # decode Placement Y

oripl_Z = sel[0].Placement.Base[2] # decode Placement Z

App.Console.PrintMessage("oripl_X : "+str(oripl_X)+"\n")

App.Console.PrintMessage("oripl_Y : "+str(oripl_Y)+"\n")

App.Console.PrintMessage("oripl_Z : "+str(oripl_Z)+"\n\n")

sel = FreeCADGui.Selection.getSelection() # select object with

 getSelection()

rotation = sel[0].Placement.Rotation # decode Placement R

otation

App.Console.PrintMessage("rotation : "+str(rotation)+"\n\n")

sel = FreeCADGui.Selection.getSelection() # select object with

 getSelection()

pl = sel[0].Shape.Placement.Rotation # decode Placement R

otation other method

App.Console.PrintMessage("Placement Rot : "+str(pl)+"\n\n")

sel = FreeCADGui.Selection.getSelection() # select object with

 getSelection()

pl = sel[0].Shape.Placement.Rotation.Angle # decode Placement R

otation Angle

App.Console.PrintMessage("Placement Rot Angle : "+str(pl)+"\n\n")

sel = FreeCADGui.Selection.getSelection() # select object with

 getSelection()

Rot_0 = sel[0].Placement.Rotation.Q[0] # decode Placement R

otation 0

App.Console.PrintMessage("Rot_0 : "+str(Rot_0)+ " rad , "+str(180 * Rot_0 / 3.1416)+"

 deg "+"\n")

Rot_1 = sel[0].Placement.Rotation.Q[1] # decode Placement R

otation 1

App.Console.PrintMessage("Rot_1 : "+str(Rot_1)+ " rad , "+str(180 * Rot_1 / 3.1416)+"

 deg "+"\n")

Rot_2 = sel[0].Placement.Rotation.Q[2] # decode Placement R

Page 131 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

otation 2

App.Console.PrintMessage("Rot_2 : "+str(Rot_2)+ " rad , "+str(180 * Rot_2 / 3.1416)+"

 deg "+"\n")

Rot_3 = sel[0].Placement.Rotation.Q[3] # decode Placement R

otation 3

App.Console.PrintMessage("Rot_3 : "+str(Rot_3)+"\n\n")

##

Manual search of an element with label

Extract the coordinate X,Y,Z and Angle giving the label

App.Console.PrintMessage("Base.x : "+str(FreeCAD.ActiveDocument.getObjectsByLabel("Cylin

dre")[0].Placement.Base.x)+"\n")

App.Console.PrintMessage("Base.y : "+str(FreeCAD.ActiveDocument.getObjectsByLabel("Cylin

dre")[0].Placement.Base.y)+"\n")

App.Console.PrintMessage("Base.z : "+str(FreeCAD.ActiveDocument.getObjectsByLabel("Cylin

dre")[0].Placement.Base.z)+"\n")

App.Console.PrintMessage("Base.Angle : "+str(FreeCAD.ActiveDocument.getObjectsByLabel("Cylin

dre")[0].Placement.Rotation.Angle)+"\n\n")

##

PS: Usually the angles are given in Radian to convert :

1. angle in Degrees to Radians :
◾ Angle in radian = pi * (angle in degree) / 180
◾ Angle in radian = math.radians(angle in degree)

2. angle in Radians to Degrees :
◾ Angle in degree = 180 * (angle in radian) / pi
◾ Angle in degree = math.degrees(angle in radian)

Cartesian coordinates

This code displays the Cartesian coordinates of the selected item.

Change the value of "numberOfPoints" if you want a different number of
points (precision)

numberOfPoints = 100 # Decomposition n

umber (or precision you can change)

selectedEdge = FreeCADGui.Selection.getSelectionEx()[0].SubObjects[0].copy() # select one elem

ent

points = selectedEdge.discretize(numberOfPoints) # discretize the

element

i=0

for p in points: # list and displa

y the coordinates

 i+=1

 print i, " X", p.x, " Y", p.y, " Z", p.z

Other method display on "Int" and "Float"

Page 132 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

import Part

from FreeCAD import Base

c=Part.makeCylinder(2,10) # create the circle

Part.show(c) # display the shape

slice accepts two arguments:

#+ the normal of the cross section plane

#+ the distance from the origin to the cross section plane. Here you have to find a value so t

hat the plane intersects your object

s=c.slice(Base.Vector(0,1,0),0) #

here the result is a single wire

depending on the source object this can be several wires

s=s[0]

if you only need the vertexes of the shape you can use

v=[]

for i in s.Vertexes:

 v.append(i.Point)

but you can also sub-sample the section to have a certain number of points (int) ...

p1=s.discretize(20)

ii=0

for i in p1:

 ii+=1

 print i # Vector()

 print ii, ": X:", i.x, " Y:", i.y, " Z:", i.z # Vector decode

Draft.makeWire(p1,closed=False,face=False,support=None) # to see the difference accuracy (20)

uncomment to use

#import Draft

#Draft.downgrade(App.ActiveDocument.ActiveObject,delete=True) # first transform the DWire in

Wire "downgrade"

#Draft.downgrade(App.ActiveDocument.ActiveObject,delete=True) # second split the Wire in sing

le objects "downgrade"

##Draft.upgrade(FreeCADGui.Selection.getSelection(),delete=True) # to attach lines contiguous

SELECTED use "upgrade"

... or define a sampling distance (float)

p2=s.discretize(0.5)

ii=0

for i in p2:

 ii+=1

 print i # Vector()

 print ii, ": X:", i.x, " Y:", i.y, " Z:", i.z # Vector decode

Draft.makeWire(p2,closed=False,face=False,support=None) # to see the difference accuracy (0.5

)

uncomment to use

#import Draft

#Draft.downgrade(App.ActiveDocument.ActiveObject,delete=True) # first transform the DWire in

Wire "downgrade"

#Draft.downgrade(App.ActiveDocument.ActiveObject,delete=True) # second split the Wire in sing

le objects "downgrade"

##Draft.upgrade(FreeCADGui.Selection.getSelection(),delete=True) # to attach lines contiguous

SELECTED use "upgrade"

Select all objects in the document

import FreeCAD

for obj in FreeCAD.ActiveDocument.Objects:

 print obj.Name # display the object Name

 objName = obj.Name

 obj = App.ActiveDocument.getObject(objName)

 Gui.Selection.addSelection(obj) # select the object

Selecting a face of an object

select one face of the object

import FreeCAD, Draft

App=FreeCAD

nameObject = "Box" # objet

faceSelect = "Face3" # face to selection

loch=App.ActiveDocument.getObject(nameObject) # objet

Gui.Selection.clearSelection() # clear all selection

Gui.Selection.addSelection(loch,faceSelect) # select the face specified

s = Gui.Selection.getSelectionEx()

#Draft.makeFacebinder(s) #

Page 133 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Embedding FreeCAD (/wiki/index.php?
title=Embedding_FreeCAD)
next: Line drawing function > (/wiki/index.php?
title=Line_drawing_function)

Create one object to the position of the Camera

create one object of the position to camera with "getCameraOrientation()"

the object is still facing the screen

import Draft

plan = FreeCADGui.ActiveDocument.ActiveView.getCameraOrientation()

plan = str(plan)

extract data

a = ""

for i in plan:

 if i in ("0123456789e.- "):

 a+=i

a = a.strip(" ")

a = a.split(" ")

####### extract data

#print a

#print a[0]

#print a[1]

#print a[2]

#print a[3]

xP = float(a[0])

yP = float(a[1])

zP = float(a[2])

qP = float(a[3])

pl = FreeCAD.Placement()

pl.Rotation.Q = (xP,yP,zP,qP) # rotation of object

pl.Base = FreeCAD.Vector(0.0,0.0,0.0) # here coordinates XYZ of Object

rec = Draft.makeRectangle(length=10.0,height=10.0,placement=pl,face=False,support=None) # crea

te rectangle

#rec = Draft.makeCircle(radius=5,placement=pl,face=False,support=None) # cre

ate circle

print rec.Name

here same code simplified

import Draft

pl = FreeCAD.Placement()

pl.Rotation = FreeCADGui.ActiveDocument.ActiveView.getCameraOrientation()

pl.Base = FreeCAD.Vector(0.0,0.0,0.0)

rec = Draft.makeRectangle(length=10.0,height=10.0,placement=pl,face=False,support=None)

Find normal vector on the surface

This example show how to find normal vector on the surface by find the u,v
parameters of one point on the surface and use u,v parameters to find
normal vector

def normal(self):

 ss=FreeCADGui.Selection.getSelectionEx()[0].SubObjects[0].copy()#SubObjects[0] is the edge

list

 points = ss.discretize(3.0)#points on the surface edge,

 #this example just use points on the edge for example.

 #However point is not necessary on the edge, it can be anywhere on the surface.

 face=FreeCADGui.Selection.getSelectionEx()[0].SubObjects[1]

 for pp in points:

 pt=FreeCAD.Base.Vector(pp.x,pp.y,pp.z)#a point on the surface edge

 uv=face.Surface.parameter(pt)# find the surface u,v parameter of a point on the surface

edge

 u=uv[0]

 v=uv[1]

 normal=face.normalAt(u,v)#use u,v to find normal vector

 print normal

 line=Part.makeLine((pp.x,pp.y,pp.z), (normal.x,normal.y,normal.z))

 Part.show(line)

Index (/wiki/index.php?title=Online_Help_Toc)

< translate> This page shows how advanced functionality can easily be built
in Python. In this exercise, we will be building a new tool that draws a line.

Page 134 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

This tool can then be linked to a FreeCAD command, and that command can
be called by any element of the interface, like a menu item or a toolbar
button.

The main script
First we will write a script containing all our functionality. Then, we will save
this in a file, and import it in FreeCAD, so all classes and functions we write
will be availible to FreeCAD. So, launch your favorite text editor, and type
the following lines:< /translate>

import FreeCADGui, Part

from pivy.coin import *

class line:

 "this class will create a line after the user clicked 2 points on the screen"

 def __init__(self):

 self.view = FreeCADGui.ActiveDocument.ActiveView

 self.stack = []

 self.callback = self.view.addEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),sel

f.getpoint)

 def getpoint(self,event_cb):

 event = event_cb.getEvent()

 if event.getState() == SoMouseButtonEvent.DOWN:

 pos = event.getPosition()

 point = self.view.getPoint(pos[0],pos[1])

 self.stack.append(point)

 if len(self.stack) == 2:

 l = Part.Line(self.stack[0],self.stack[1])

 shape = l.toShape()

 Part.show(shape)

 self.view.removeEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),self.cal

lback)

<translate>

Detailed explanation
</translate>

import Part, FreeCADGui

from pivy.coin import *

<translate> In Python, when you want to use functions from another
module, you need to import it. In our case, we will need functions from the
Part Module (/wiki/index.php?title=Part_Module), for creating the line, and
from the Gui module (FreeCADGui), for accessing the 3D view. We also need
the complete contents of the coin library, so we can use directly all coin
objects like SoMouseButtonEvent, etc...< /translate>

class line:

<translate> Here we define our main class. Why do we use a class and not a
function? The reason is that we need our tool to stay "alive" while we are
waiting for the user to click on the screen. A function ends when its task has
been done, but an object (a class defines an object) stays alive until it is
destroyed.< /translate>

"this class will create a line after the user clicked 2 points on the screen"

<translate> In Python, every class or function can have a description string.
This is particularly useful in FreeCAD, because when you'll call that class in
the interpreter, the description string will be displayed as a tooltip.
< /translate>

def __init__(self):

<translate> Python classes can always contain an __init__ function, which is
executed when the class is called to create an object. So, we will put here
everything we want to happen when our line tool begins.< /translate>

self.view = FreeCADGui.ActiveDocument.ActiveView

Page 135 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

<translate> In a class, you usually want to append self. before a variable
name, so it will be easily accessible to all functions inside and outside that
class. Here, we will use self.view to access and manipulate the active 3D
view. < /translate>

self.stack = []

<translate> Here we create an empty list that will contain the 3D points sent
by the getpoint function. < /translate>

self.callback = self.view.addEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),self.getpoi

nt)

<translate> This is the important part: Since it is actually a coin3D
(http://www.coin3d.org/) scene, the FreeCAD uses coin callback mechanism,
that allows a function to be called everytime a certain scene event happens.
In our case, we are creating a callback for SoMouseButtonEvent
(http://doc.coin3d.org/Coin/group__events.html) events, and we bind it to
the getpoint function. Now, everytime a mouse button is pressed or
released, the getpoint function will be executed.

Note that there is also an alternative to addEventCallbackPivy() called
addEventCallback() which dispenses the use of pivy. But since pivy is a very
efficient and natural way to access any part of the coin scene, it is much
better to use it as much as you can! < /translate>

def getpoint(self,event_cb):

<translate> Now we define the getpoint function, that will be executed when
a mouse button is pressed in a 3D view. This function will receive an
argument, that we will call event_cb. From this event callback we can access
the event object, which contains several pieces of information (mode info
here (/wiki/index.php?
title=Code_snippets#Observing_mouse_events_in_the_3D_viewer_via_Python)).
< /translate>

if event.getState() == SoMouseButtonEvent.DOWN:

<translate> The getpoint function will be called when a mouse button is
pressed or released. But we want to pick a 3D point only when pressed
(otherwise we would get two 3D points very close to each other). So we must
check for that here. < /translate>

pos = event.getPosition()

<translate> Here we get the screen coordinates of the mouse
cursor< /translate>

point = self.view.getPoint(pos[0],pos[1])

<translate> This function gives us a FreeCAD vector (x,y,z) containing the 3D
point that lies on the focal plane, just under our mouse cursor. If you are in
camera view, imagine a ray coming from the camera, passing through the
mouse cursor, and hitting the focal plane. There is our 3D point. If we are in
orthogonal view, the ray is parallel to the view direction.< /translate>

self.stack.append(point)

<translate> We add our new point to the stack< /translate>

if len(self.stack) == 2:

<translate> Do we have enough points already? if yes, then let's draw the
line!< /translate>

l = Part.Line(self.stack[0],self.stack[1])

<translate> Here we use the function Line() from the Part Module
(/wiki/index.php?title=Part_Module) that creates a line from two FreeCAD
vectors. Everything we create and modify inside the Part module, stays in

Page 136 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

the Part module. So, until now, we created a Line Part. It is not bound to any
object of our active document, so nothing appears on the
screen.< /translate>

shape = l.toShape()

<translate> The FreeCAD document can only accept shapes from the Part
module. Shapes are the most generic type of the Part module. So, we must
convert our line to a shape before adding it to the document.< /translate>

Part.show(shape)

<translate> The Part module has a very handy show() function that creates a
new object in the document and binds a shape to it. We could also have
created a new object in the document first, then bound the shape to it
manually.< /translate>

self.view.removeEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),self.callback)

<translate> Since we are done with our line, let's remove the callback
mechanism, that consumes precious CPU cycles.

Testing & Using the script
Now, let's save our script to some place where the FreeCAD python
interpreter will find it. When importing modules, the interpreter will look in
the following places: the python installation paths, the FreeCAD bin
directory, and all FreeCAD modules directories. So, the best solution is to
create a new directory in one of the FreeCAD Mod directories
(/wiki/index.php?title=Installing_more_workbenches), and to save our script
in it. For example, let's make a "MyScripts" directory, and save our script as
"exercise.py".

Now, everything is ready, let's start FreeCAD, create a new document, and, in
the python interpreter, issue: < /translate>

import exercise

<translate> If no error message appear, that means our exercise script has
been loaded. We can now check its contents with:< /translate>

dir(exercise)

<translate> The command dir() is a built-in python command that lists the
contents of a module. We can see that our line() class is there, waiting for
us. Now let's test it: < /translate>

exercise.line()

<translate> Then, click two times in the 3D view, and bingo, here is our line!
To do it again, just type exercise.line() again, and again, and again... Feels
great, no?

Registering the script in the FreeCAD interface
Now, for our new line tool to be really cool, it should have a button on the
interface, so we don't need to type all that stuff everytime. The easiest way
is to transform our new MyScripts directory into a full FreeCAD workbench. It
is easy, all that is needed is to put a file called InitGui.py inside your
MyScripts directory. The InitGui.py will contain the instructions to create a
new workbench, and add our new tool to it. Besides that we will also need
to transform a bit our exercise code, so the line() tool is recognized as an
official FreeCAD command. Let's start by making an InitGui.py file, and write
the following code in it: < /translate>

Page 137 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

class MyWorkbench (Workbench):

 MenuText = "MyScripts"

 def Initialize(self):

 import exercise

 commandslist = ["line"]

 self.appendToolbar("My Scripts",commandslist)

Gui.addWorkbench(MyWorkbench())

<translate> By now, you should already understand the above script by
yourself, I think: We create a new class that we call MyWorkbench, we give it
a title (MenuText), and we define an Initialize() function that will be
executed when the workbench is loaded into FreeCAD. In that function, we
load in the contents of our exercise file, and append the FreeCAD commands
found inside to a command list. Then, we make a toolbar called "My Scripts"
and we assign our commands list to it. Currently, of course, we have only
one tool, so our command list contains only one element. Then, once our
workbench is ready, we add it to the main interface.

But this still won't work, because a FreeCAD command must be formatted in
a certain way to work. So we will need to transform a bit our line() tool. Our
new exercise.py script will now look like this:< /translate>

import FreeCADGui, Part

from pivy.coin import *

class line:

 "this class will create a line after the user clicked 2 points on the screen"

 def Activated(self):

 self.view = FreeCADGui.ActiveDocument.ActiveView

 self.stack = []

 self.callback = self.view.addEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),self.get

point)

 def getpoint(self,event_cb):

 event = event_cb.getEvent()

 if event.getState() == SoMouseButtonEvent.DOWN:

 pos = event.getPosition()

 point = self.view.getPoint(pos[0],pos[1])

 self.stack.append(point)

 if len(self.stack) == 2:

 l = Part.Line(self.stack[0],self.stack[1])

 shape = l.toShape()

 Part.show(shape)

 self.view.removeEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),self.callback)

 def GetResources(self):

 return {'Pixmap' : 'path_to_an_icon/line_icon.png', 'MenuText': 'Line', 'ToolTip': 'Creat

es a line by clicking 2 points on the screen'}

FreeCADGui.addCommand('line', line())

<translate> What we did here is transform our __init__() function into an
Activated() function, because when FreeCAD commands are run, they
automatically execute the Activated() function. We also added a
GetResources() function, that informs FreeCAD where it can find an icon for
the tool, and what will be the name and tooltip of our tool. Any jpg, png or
svg image will work as an icon, it can be any size, but it is best to use a size
that is close to the final aspect, like 16x16, 24x24 or 32x32. Then, we add the
line() class as an official FreeCAD command with the addCommand()
method.

That's it, we now just need to restart FreeCAD and we'll have a nice new
workbench with our brand new line tool!

So you want more?
If you liked this exercise, why not try to improve this little tool? There are
many things that can be done, like for example:

◾ Add user feedback: until now we did a very bare tool, the user might be
a bit lost when using it. So we could add some feedback, telling him
what to do next. For example, you could issue messages to the FreeCAD
console. Have a look in the FreeCAD.Console module

◾ Add a possibility to type the 3D points coordinates manually. Look at
the python input() function, for example

◾ Add the possibility to add more than 2 points

Page 138 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Code snippets (/wiki/index.php?title=Code_snippets)
next: Dialog creation > (/wiki/index.php?title=Dialog_creation)

◾ Add events for other things: Now we just check for Mouse button
events, what if we would also do something when the mouse is moved,
like displaying current coordinates?

◾ Give a name to the created object
Don't hesitate to write your questions or ideas on the forum
(http://forum.freecadweb.org/)!

Index (/wiki/index.php?title=Online_Help_Toc)
</translate>

< translate> In this page we will show how to build a simple Qt Dialog with
Qt Designer (http://qt-project.org/doc/qt-4.8/designer-manual.html), Qt's
official tool for designing interfaces, then convert it to python code, then
use it inside FreeCAD. I'll assume in the example that you know how to edit
and run python scripts already, and that you can do simple things in a
terminal window such as navigate, etc. You must also have, of course, pyqt
installed.

Designing the dialog
In CAD applications, designing a good UI (User Interface) is very important.
About everything the user will do will be through some piece of interface:
reading dialog boxes, pressing buttons, choosing between icons, etc. So it is
very important to think carefully to what you want to do, how you want the
user to behave, and how will be the workflow of your action.

There are a couple of concepts to know when designing interface:

◾ Modal/non-modal dialogs
(http://en.wikipedia.org/wiki/Modal_window): A modal dialog appears
in front of your screen, stopping the action of the main window, forcing
the user to respond to the dialog, while a non-modal dialog doesn't
stop you from working on the main window. In some case the first is
better, in other cases not.

◾ Identifying what is required and what is optional: Make sure the user
knows what he must do. Label everything with proper description, use
tooltips, etc.

◾ Separating commands from parameters: This is usually done with
buttons and text input fields. The user knows that clicking a button will
produce an action while changing a value inside a text field will change
a parameter somewhere. Nowadays, though, users usually know well
what is a button, what is an input field, etc. The interface toolkit we are
using, Qt, is a state-of-the-art toolkit, and we won't have to worry much
about making things clear, since they will already be very clear by
themselves.

So, now that we have well defined what we will do, it's time to open the qt
designer. Let's design a very simple dialog, like this:

 (/wiki/index.php?title=File:Qttestdialog.jpg)

Page 139 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

We will then use this dialog in FreeCAD to produce a nice rectangular plane.
You might find it not very useful to produce nice rectangular planes, but it
will be easy to change it later to do more complex things. When you open it,
Qt Designer looks like this:

(/wiki/index.php?title=File:Qtdesigner-screenshot.jpg)

It is very simple to use. On the left bar you have elements that can be
dragged on your widget. On the right side you have properties panels
displaying all kinds of editable properties of selected elements. So, begin
with creating a new widget. Select "Dialog without buttons", since we don't
want the default Ok/Cancel buttons. Then, drag on your widget 3 labels, one
for the title, one for writing "Height" and one for writing "Width". Labels are
simple texts that appear on your widget, just to inform the user. If you
select a label, on the right side will appear several properties that you can
change if you want, such as font style, height, etc.

Then, add 2 LineEdits, which are text fields that the user can fill in, one for
the height and one for the width. Here too, we can edit properties. For
example, why not set a default value? For example 1.00 for each. This way,
when the user will see the dialog, both values will be filled already and if he
is satisfied he can directly press the button, saving precious time. Then, add
a PushButton, which is the button the user will need to press after he filled
the 2 fields.

Note that I choosed here very simple controls, but Qt has many more
options, for example you could use Spinboxes instead of LineEdits, etc...
Have a look at what is available, you will surely have other ideas.

That's about all we need to do in Qt Designer. One last thing, though, let's
rename all our elements with easier names, so it will be easier to identify
them in our scripts:

 (/wiki/index.php?

title=File:Qtpropeditor.jpg) < /translate>< translate>

Converting our dialog to python

Page 140 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

</translate>< translate> Now, let's save our widget somewhere. It will be
saved as an .ui file, that we will easily convert to python script with pyuic.
On windows, the pyuic program is bundled with pyqt (to be verified), on
linux you probably will need to install it separately from your package
manager (on debian-based systems, it is part of the pyqt4-dev-tools
package). To do the conversion, you'll need to open a terminal window (or a
command prompt window on windows), navigate to where you saved
your .ui file, and issue:< /translate>

pyuic mywidget.ui > mywidget.py

<translate> Into Windows pyuic.py are located in "C:\Python27\Lib\site-
packages\PyQt4\uic\pyuic.py" For create batch file
"compQt4.bat:< /translate>

@"C:\Python27\python" "C:\Python27\Lib\site-packages\PyQt4\uic\pyuic.py" -x %1.ui > %1.py

<translate> In the console Dos type without extension< /translate>

compQt4 myUiFile

<translate> Into Linux : to do< /translate>

<translate> Since FreeCAD progressively moved away from PyQt after
version 0.13, in favour of PySide (http://qt-project.org/wiki/PySide) (Choice
your PySide install building PySide
(http://pyside.readthedocs.org/en/latest/building/)), to make the file
based on PySide now you have to use:

</translate>

pyside-uic mywidget.ui -o mywidget.py

<translate> Into Windows uic.py are located in "C:\Python27\Lib\site-
packages\PySide\scripts\uic.py" For create batch file "compSide.bat":

@"C:\Python27\python" "C:\Python27\Lib\site-packages\PySide\scripts\uic.py" %1.ui > %1.py

In the console Dos type without extension

compSide myUiFile

Into Linux : to do

On some systems the program is called pyuic4 instead of pyuic. This will
simply convert the .ui file into a python script. If we open the mywidget.py
file, its contents are very easy to understand:< /translate>

from PySide import QtCore, QtGui

class Ui_Dialog(object):

 def setupUi(self, Dialog):

 Dialog.setObjectName("Dialog")

 Dialog.resize(187, 178)

 self.title = QtGui.QLabel(Dialog)

 self.title.setGeometry(QtCore.QRect(10, 10, 271, 16))

 self.title.setObjectName("title")

 self.label_width = QtGui.QLabel(Dialog)

 ...

 self.retranslateUi(Dialog)

 QtCore.QMetaObject.connectSlotsByName(Dialog)

 def retranslateUi(self, Dialog):

 Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog", None, QtGui.QAp

plication.UnicodeUTF8))

 self.title.setText(QtGui.QApplication.translate("Dialog", "Plane-O-Matic", None, QtGui

.QApplication.UnicodeUTF8))

 ...

<translate> As you see it has a very simple structure: a class named
Ui_Dialog is created, that stores the interface elements of our widget. That
class has two methods, one for setting up the widget, and one for
translating its contents, that is part of the general Qt mechanism for

Page 141 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

translating interface elements. The setup method simply creates, one by
one, the widgets as we defined them in Qt Designer, and sets their options
as we decided earlier. Then, the whole interface gets translated, and finally,
the slots get connected (we'll talk about that later).

We can now create a new widget, and use this class to create its interface.
We can already see our widget in action, by putting our mywidget.py file in a
place where FreeCAD will find it (in the FreeCAD bin directory, or in any of
the Mod subdirectories), and, in the FreeCAD python interpreter,
issue:< /translate>

from PySide import QtGui

import mywidget

d = QtGui.QWidget()

d.ui = mywidget.Ui_Dialog()

d.ui.setupUi(d)

d.show()

<translate> And our dialog will appear! Note that our python interpreter is
still working, we have a non-modal dialog. So, to close it, we can (apart from
clicking its close icon, of course) issue:< /translate>

d.hide()

<translate>

Making our dialog do something
Now that we can show and hide our dialog, we just need to add one last
part: To make it do something! If you play a bit with Qt designer, you'll
quickly discover a whole section called "signals and slots". Basically, it
works like this: elements on your widgets (in Qt terminology, those elements
are themselves widgets) can send signals. Those signals differ according to
the widget type. For example, a button can send a signal when it is pressed
and when it is released. Those signals can be connected to slots, which can
be special functionality of other widgets (for example a dialog has a "close"
slot to which you can connect the signal from a close button), or can be
custom functions. The PyQt Reference Documentation
(http://www.riverbankcomputing.co.uk/static/Docs/PyQt4/html/classes.html)
lists all the qt widgets, what they can do, what signals they can send, etc...

What we will do here, is to create a new function that will create a plane
based on height and width, and to connect that function to the pressed
signal emitted by our "Create!" button. So, let's begin with importing our
FreeCAD modules, by putting the following line at the top of the script,
where we already import QtCore and QtGui: < /translate>

import FreeCAD, Part

<translate> Then, let's add a new function to our Ui_Dialog
class:< /translate>

def createPlane(self):

 try:

 # first we check if valid numbers have been entered

 w = float(self.width.text())

 h = float(self.height.text())

 except ValueError:

 print "Error! Width and Height values must be valid numbers!"

 else:

 # create a face from 4 points

 p1 = FreeCAD.Vector(0,0,0)

 p2 = FreeCAD.Vector(w,0,0)

 p3 = FreeCAD.Vector(w,h,0)

 p4 = FreeCAD.Vector(0,h,0)

 pointslist = [p1,p2,p3,p4,p1]

 mywire = Part.makePolygon(pointslist)

 myface = Part.Face(mywire)

 Part.show(myface)

 self.hide()

<translate> Then, we need to inform Qt to connect the button to the
function, by placing the following line just before
QtCore.QMetaObject.connectSlotsByName(Dialog): < /translate>

Page 142 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

QtCore.QObject.connect(self.create,QtCore.SIGNAL("pressed()"),self.createPlane)

<translate> This, as you see, connects the pressed() signal of our create
object (the "Create!" button), to a slot named createPlane, which we just
defined. That's it! Now, as a final touch, we can add a little function to create
the dialog, it will be easier to call. Outside the Ui_Dialog class, let's add this
code: < /translate>

class plane():

 def __init__(self):

 self.d = QtGui.QWidget()

 self.ui = Ui_Dialog()

 self.ui.setupUi(self.d)

 self.d.show()

<translate> (Python reminder: the __init__ method of a class is
automatically executed whenever a new object is created!) Then, from
FreeCAD, we only need to do: < /translate>

import mywidget

myDialog = mywidget.plane()

<translate> That's all Folks... Now you can try all kinds of things, like for
example inserting your widget in the FreeCAD interface (see the Code
snippets (/wiki/index.php?title=Code_snippets) page), or making much
more advanced custom tools, by using other elements on your widget.

The complete script
This is the complete script, for reference: < /translate>

Page 143 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

-*- coding: utf-8 -*-

Form implementation generated from reading ui file 'mywidget.ui'

Created: Mon Jun 1 19:09:10 2009

by: PyQt4 UI code generator 4.4.4

Modified for PySide 16:02:2015

WARNING! All changes made in this file will be lost!

from PySide import QtCore, QtGui

import FreeCAD, Part

class Ui_Dialog(object):

 def setupUi(self, Dialog):

 Dialog.setObjectName("Dialog")

 Dialog.resize(187, 178)

 self.title = QtGui.QLabel(Dialog)

 self.title.setGeometry(QtCore.QRect(10, 10, 271, 16))

 self.title.setObjectName("title")

 self.label_width = QtGui.QLabel(Dialog)

 self.label_width.setGeometry(QtCore.QRect(10, 50, 57, 16))

 self.label_width.setObjectName("label_width")

 self.label_height = QtGui.QLabel(Dialog)

 self.label_height.setGeometry(QtCore.QRect(10, 90, 57, 16))

 self.label_height.setObjectName("label_height")

 self.width = QtGui.QLineEdit(Dialog)

 self.width.setGeometry(QtCore.QRect(60, 40, 111, 26))

 self.width.setObjectName("width")

 self.height = QtGui.QLineEdit(Dialog)

 self.height.setGeometry(QtCore.QRect(60, 80, 111, 26))

 self.height.setObjectName("height")

 self.create = QtGui.QPushButton(Dialog)

 self.create.setGeometry(QtCore.QRect(50, 140, 83, 26))

 self.create.setObjectName("create")

 self.retranslateUi(Dialog)

 QtCore.QObject.connect(self.create,QtCore.SIGNAL("pressed()"),self.createPlane)

 QtCore.QMetaObject.connectSlotsByName(Dialog)

 def retranslateUi(self, Dialog):

 Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog", None, QtGui.QApp

lication.UnicodeUTF8))

 self.title.setText(QtGui.QApplication.translate("Dialog", "Plane-O-Matic", None, QtGui.

QApplication.UnicodeUTF8))

 self.label_width.setText(QtGui.QApplication.translate("Dialog", "Width", None, QtGui.QA

pplication.UnicodeUTF8))

 self.label_height.setText(QtGui.QApplication.translate("Dialog", "Height", None, QtGui.

QApplication.UnicodeUTF8))

 self.create.setText(QtGui.QApplication.translate("Dialog", "Create!", None, QtGui.QAppl

ication.UnicodeUTF8))

 def createPlane(self):

 try:

 # first we check if valid numbers have been entered

 w = float(self.width.text())

 h = float(self.height.text())

 except ValueError:

 print "Error! Width and Height values must be valid numbers!"

 else:

 # create a face from 4 points

 p1 = FreeCAD.Vector(0,0,0)

 p2 = FreeCAD.Vector(w,0,0)

 p3 = FreeCAD.Vector(w,h,0)

 p4 = FreeCAD.Vector(0,h,0)

 pointslist = [p1,p2,p3,p4,p1]

 mywire = Part.makePolygon(pointslist)

 myface = Part.Face(mywire)

 Part.show(myface)

class plane():

 def __init__(self):

 self.d = QtGui.QWidget()

 self.ui = Ui_Dialog()

 self.ui.setupUi(self.d)

 self.d.show()

<translate>

Creation of a dialog with buttons

Method 1

An example of a dialog box complete with its connections. < /translate>

Page 144 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

-*- coding: utf-8 -*-

Create by flachyjoe

from PySide import QtCore, QtGui

try:

 _fromUtf8 = QtCore.QString.fromUtf8

except AttributeError:

 def _fromUtf8(s):

 return s

try:

 _encoding = QtGui.QApplication.UnicodeUTF8

 def _translate(context, text, disambig):

 return QtGui.QApplication.translate(context, text, disambig, _encoding)

except AttributeError:

 def _translate(context, text, disambig):

 return QtGui.QApplication.translate(context, text, disambig)

class Ui_MainWindow(object):

 def __init__(self, MainWindow):

 self.window = MainWindow

 MainWindow.setObjectName(_fromUtf8("MainWindow"))

 MainWindow.resize(400, 300)

 self.centralWidget = QtGui.QWidget(MainWindow)

 self.centralWidget.setObjectName(_fromUtf8("centralWidget"))

 self.pushButton = QtGui.QPushButton(self.centralWidget)

 self.pushButton.setGeometry(QtCore.QRect(30, 170, 93, 28))

 self.pushButton.setObjectName(_fromUtf8("pushButton"))

 self.pushButton.clicked.connect(self.on_pushButton_clicked) #connection pushButton

 self.lineEdit = QtGui.QLineEdit(self.centralWidget)

 self.lineEdit.setGeometry(QtCore.QRect(30, 40, 211, 22))

 self.lineEdit.setObjectName(_fromUtf8("lineEdit"))

 self.lineEdit.returnPressed.connect(self.on_lineEdit_clicked) #connection lineEdit

 self.checkBox = QtGui.QCheckBox(self.centralWidget)

 self.checkBox.setGeometry(QtCore.QRect(30, 90, 81, 20))

 self.checkBox.setChecked(True)

 self.checkBox.setObjectName(_fromUtf8("checkBoxON"))

 self.checkBox.clicked.connect(self.on_checkBox_clicked) #connection checkBox

 self.radioButton = QtGui.QRadioButton(self.centralWidget)

 self.radioButton.setGeometry(QtCore.QRect(30, 130, 95, 20))

 self.radioButton.setObjectName(_fromUtf8("radioButton"))

 self.radioButton.clicked.connect(self.on_radioButton_clicked) #connection radioButton

 MainWindow.setCentralWidget(self.centralWidget)

 self.menuBar = QtGui.QMenuBar(MainWindow)

 self.menuBar.setGeometry(QtCore.QRect(0, 0, 400, 26))

 self.menuBar.setObjectName(_fromUtf8("menuBar"))

 MainWindow.setMenuBar(self.menuBar)

 self.mainToolBar = QtGui.QToolBar(MainWindow)

 self.mainToolBar.setObjectName(_fromUtf8("mainToolBar"))

 MainWindow.addToolBar(QtCore.Qt.TopToolBarArea, self.mainToolBar)

 self.statusBar = QtGui.QStatusBar(MainWindow)

 self.statusBar.setObjectName(_fromUtf8("statusBar"))

 MainWindow.setStatusBar(self.statusBar)

 self.retranslateUi(MainWindow)

 def retranslateUi(self, MainWindow):

 MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow", None))

 self.pushButton.setText(_translate("MainWindow", "OK", None))

 self.lineEdit.setText(_translate("MainWindow", "tyty", None))

 self.checkBox.setText(_translate("MainWindow", "CheckBox", None))

 self.radioButton.setText(_translate("MainWindow", "RadioButton", None))

 def on_checkBox_clicked(self):

 if self.checkBox.checkState()==0:

 App.Console.PrintMessage(str(self.checkBox.checkState())+" CheckBox KO\r\n")

 else:

 App.Console.PrintMessage(str(self.checkBox.checkState())+" CheckBox OK\r\n")

App.Console.PrintMessage(str(self.lineEdit.setText("tititi"))+" LineEdit\r\n") #write

 text to the lineEdit window !

str(self.lineEdit.setText("tititi")) #écrit le texte dans la fenêtre lineEdit

 App.Console.PrintMessage(str(self.lineEdit.displayText())+" LineEdit\r\n")

 def on_radioButton_clicked(self):

 if self.radioButton.isChecked():

Page 145 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

 App.Console.PrintMessage(str(self.radioButton.isChecked())+" Radio OK\r\n")

 else:

 App.Console.PrintMessage(str(self.radioButton.isChecked())+" Radio KO\r\n")

 def on_lineEdit_clicked(self):

if self.lineEdit.textChanged():

 App.Console.PrintMessage(str(self.lineEdit.displayText())+" LineEdit Display\r\n"

)

 def on_pushButton_clicked(self):

 App.Console.PrintMessage("Terminé\r\n")

 self.window.hide()

MainWindow = QtGui.QMainWindow()

ui = Ui_MainWindow(MainWindow)

MainWindow.show()

<translate> Here the same window but with an icon on each button.

Download associated icons (Click rigth "Copy the image below ...)"

 (/wiki/index.php?title=File:Icone01.png) (/wiki/index.php?

title=File:Icone02.png) (/wiki/index.php?title=File:Icone03.png)

</translate>

Page 146 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

-*- coding: utf-8 -*-

from PySide import QtCore, QtGui

try:

 _fromUtf8 = QtCore.QString.fromUtf8

except AttributeError:

 def _fromUtf8(s):

 return s

try:

 _encoding = QtGui.QApplication.UnicodeUTF8

 def _translate(context, text, disambig):

 return QtGui.QApplication.translate(context, text, disambig, _encoding)

except AttributeError:

 def _translate(context, text, disambig):

 return QtGui.QApplication.translate(context, text, disambig)

class Ui_MainWindow(object):

 def __init__(self, MainWindow):

 self.window = MainWindow

 path = FreeCAD.ConfigGet("UserAppData")

path = FreeCAD.ConfigGet("AppHomePath")

 MainWindow.setObjectName(_fromUtf8("MainWindow"))

 MainWindow.resize(400, 300)

 self.centralWidget = QtGui.QWidget(MainWindow)

 self.centralWidget.setObjectName(_fromUtf8("centralWidget"))

 self.pushButton = QtGui.QPushButton(self.centralWidget)

 self.pushButton.setGeometry(QtCore.QRect(30, 170, 93, 28))

 self.pushButton.setObjectName(_fromUtf8("pushButton"))

 self.pushButton.clicked.connect(self.on_pushButton_clicked) #connection pushButton

 self.lineEdit = QtGui.QLineEdit(self.centralWidget)

 self.lineEdit.setGeometry(QtCore.QRect(30, 40, 211, 22))

 self.lineEdit.setObjectName(_fromUtf8("lineEdit"))

 self.lineEdit.returnPressed.connect(self.on_lineEdit_clicked) #connection lineEdit

 self.checkBox = QtGui.QCheckBox(self.centralWidget)

 self.checkBox.setGeometry(QtCore.QRect(30, 90, 100, 20))

 self.checkBox.setChecked(True)

 self.checkBox.setObjectName(_fromUtf8("checkBoxON"))

 self.checkBox.clicked.connect(self.on_checkBox_clicked) #connection checkBox

 self.radioButton = QtGui.QRadioButton(self.centralWidget)

 self.radioButton.setGeometry(QtCore.QRect(30, 130, 95, 20))

 self.radioButton.setObjectName(_fromUtf8("radioButton"))

 self.radioButton.clicked.connect(self.on_radioButton_clicked) #connection radioButton

 MainWindow.setCentralWidget(self.centralWidget)

 self.menuBar = QtGui.QMenuBar(MainWindow)

 self.menuBar.setGeometry(QtCore.QRect(0, 0, 400, 26))

 self.menuBar.setObjectName(_fromUtf8("menuBar"))

 MainWindow.setMenuBar(self.menuBar)

 self.mainToolBar = QtGui.QToolBar(MainWindow)

 self.mainToolBar.setObjectName(_fromUtf8("mainToolBar"))

 MainWindow.addToolBar(QtCore.Qt.TopToolBarArea, self.mainToolBar)

 self.statusBar = QtGui.QStatusBar(MainWindow)

 self.statusBar.setObjectName(_fromUtf8("statusBar"))

 MainWindow.setStatusBar(self.statusBar)

 self.retranslateUi(MainWindow)

 # Affiche un icone sur le bouton PushButton

 # self.image_01 = "C:\Program Files\FreeCAD0.13\Icone01.png" # adapt the icon name

 self.image_01 = path+"Icone01.png" # adapt the name of the icon

 icon01 = QtGui.QIcon()

 icon01.addPixmap(QtGui.QPixmap(self.image_01),QtGui.QIcon.Normal, QtGui.QIcon.Off)

 self.pushButton.setIcon(icon01)

 self.pushButton.setLayoutDirection(QtCore.Qt.RightToLeft) # This command reverses the

direction of the button

 # Affiche un icone sur le bouton RadioButton

 # self.image_02 = "C:\Program Files\FreeCAD0.13\Icone02.png" # adapt the name of the i

con

 self.image_02 = path+"Icone02.png" # adapter le nom de l'icone

 icon02 = QtGui.QIcon()

 icon02.addPixmap(QtGui.QPixmap(self.image_02),QtGui.QIcon.Normal, QtGui.QIcon.Off)

 self.radioButton.setIcon(icon02)

 # self.radioButton.setLayoutDirection(QtCore.Qt.RightToLeft) # This command reverses

the direction of the button

Page 147 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

 # Affiche un icone sur le bouton CheckBox

 # self.image_03 = "C:\Program Files\FreeCAD0.13\Icone03.png" # the name of the icon

 self.image_03 = path+"Icone03.png" # adapter le nom de l'icone

 icon03 = QtGui.QIcon()

 icon03.addPixmap(QtGui.QPixmap(self.image_03),QtGui.QIcon.Normal, QtGui.QIcon.Off)

 self.checkBox.setIcon(icon03)

 # self.checkBox.setLayoutDirection(QtCore.Qt.RightToLeft) # This command reverses the

direction of the button

 def retranslateUi(self, MainWindow):

 MainWindow.setWindowTitle(_translate("MainWindow", "FreeCAD", None))

 self.pushButton.setText(_translate("MainWindow", "OK", None))

 self.lineEdit.setText(_translate("MainWindow", "tyty", None))

 self.checkBox.setText(_translate("MainWindow", "CheckBox", None))

 self.radioButton.setText(_translate("MainWindow", "RadioButton", None))

 def on_checkBox_clicked(self):

 if self.checkBox.checkState()==0:

 App.Console.PrintMessage(str(self.checkBox.checkState())+" CheckBox KO\r\n")

 else:

 App.Console.PrintMessage(str(self.checkBox.checkState())+" CheckBox OK\r\n")

 # App.Console.PrintMessage(str(self.lineEdit.setText("tititi"))+" LineEdit\r\n") #

write text to the lineEdit window !

 # str(self.lineEdit.setText("tititi")) #écrit le texte dans la fenêtre lineEdit

 App.Console.PrintMessage(str(self.lineEdit.displayText())+" LineEdit\r\n")

 def on_radioButton_clicked(self):

 if self.radioButton.isChecked():

 App.Console.PrintMessage(str(self.radioButton.isChecked())+" Radio OK\r\n")

 else:

 App.Console.PrintMessage(str(self.radioButton.isChecked())+" Radio KO\r\n")

 def on_lineEdit_clicked(self):

 # if self.lineEdit.textChanged():

 App.Console.PrintMessage(str(self.lineEdit.displayText())+" LineEdit Display\r\n")

 def on_pushButton_clicked(self):

 App.Console.PrintMessage("Terminé\r\n")

 self.window.hide()

MainWindow = QtGui.QMainWindow()

ui = Ui_MainWindow(MainWindow)

MainWindow.show()

<translate> Here the code to display the icon on the pushButton, change
the name for another button, (radioButton, checkBox) and the path to the
icon. < /translate>

 # Affiche un icône sur le bouton PushButton

 # self.image_01 = "C:\Program Files\FreeCAD0.13\icone01.png" # the name of the icon

 self.image_01 = path+"icone01.png" # the name of the icon

 icon01 = QtGui.QIcon()

 icon01.addPixmap(QtGui.QPixmap(self.image_01),QtGui.QIcon.Normal, QtGui.QIcon.Off)

 self.pushButton.setIcon(icon01)

 self.pushButton.setLayoutDirection(QtCore.Qt.RightToLeft) # This command reverses the

direction of the button

<translate> The command UserAppData gives the user path AppHomePath
gives the installation path of FreeCAD< /translate>

path = FreeCAD.ConfigGet("UserAppData")

 path = FreeCAD.ConfigGet("AppHomePath")

<translate> This command reverses the horizontal button, right to
left.< /translate>

self.pushButton.setLayoutDirection(QtCore.Qt.RightToLeft) # This command reverses the directio

n of the button

<translate>

Method 2

Another method to display a window, here by creating a file QtForm.py
which contains the header program (module called with import QtForm),
and a second module that contains the code window all these accessories,
and your code (the calling module).

Page 148 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

This method requires two separate files, but allows to shorten your program
using the file ' ' QtForm.py ' ' import. Then distribute the two files together,
they are inseparable.

The file QtForm.py < /translate>

-*- coding: utf-8 -*-

Create by flachyjoe

from PySide import QtCore, QtGui

try:

 _fromUtf8 = QtCore.QString.fromUtf8

except AttributeError:

 def _fromUtf8(s):

 return s

try:

 _encoding = QtGui.QApplication.UnicodeUTF8

 def _translate(context, text, disambig):

 return QtGui.QApplication.translate(context, text, disambig, _encoding)

except AttributeError:

 def _translate(context, text, disambig):

 return QtGui.QApplication.translate(context, text, disambig)

class Form(object):

 def __init__(self, title, width, height):

 self.window = QtGui.QMainWindow()

 self.title=title

 self.window.setObjectName(_fromUtf8(title))

 self.window.setWindowTitle(_translate(self.title, self.title, None))

 self.window.resize(width, height)

 def show(self):

 self.createUI()

 self.retranslateUI()

 self.window.show()

 def setText(self, control, text):

 control.setText(_translate(self.title, text, None))

<translate> The appellant, file that contains the window and your code.

The file my_file.py

The connections are to do, a good exercise.< /translate>

-*- coding: utf-8 -*-

Create by flachyjoe

from PySide import QtCore, QtGui

import QtForm

class myForm(QtForm.Form):

 def createUI(self):

 self.centralWidget = QtGui.QWidget(self.window)

 self.window.setCentralWidget(self.centralWidget)

 self.pushButton = QtGui.QPushButton(self.centralWidget)

 self.pushButton.setGeometry(QtCore.QRect(30, 170, 93, 28))

 self.pushButton.clicked.connect(self.on_pushButton_clicked)

 self.lineEdit = QtGui.QLineEdit(self.centralWidget)

 self.lineEdit.setGeometry(QtCore.QRect(30, 40, 211, 22))

 self.checkBox = QtGui.QCheckBox(self.centralWidget)

 self.checkBox.setGeometry(QtCore.QRect(30, 90, 81, 20))

 self.checkBox.setChecked(True)

 self.radioButton = QtGui.QRadioButton(self.centralWidget)

 self.radioButton.setGeometry(QtCore.QRect(30, 130, 95, 20))

 def retranslateUI(self):

 self.setText(self.pushButton, "Fermer")

 self.setText(self.lineEdit, "essai de texte")

 self.setText(self.checkBox, "CheckBox")

 self.setText(self.radioButton, "RadioButton")

 def on_pushButton_clicked(self):

 self.window.hide()

myWindow=myForm("Fenetre de test",400,300)

myWindow.show()

<translate>

Page 149 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Other example

(/wiki/index.php?
title=File:Qt_Example_00.png)

Qt example 1

(/wiki/index.php?
title=File:Qt_Example_01.png)

Qt example details

Are treated :

1. icon for window
2. horizontalSlider
3. progressBar horizontal
4. verticalSlider
5. progressBar vertical
6. lineEdit
7. lineEdit
8. doubleSpinBox
9. doubleSpinBox

10. doubleSpinBox
11. buttom
12. buttom
13. radioButtom with icons
14. checkBox with icon checked and unchecked
15. textEdit
16. graphicsView with 2 graphes
The code page and the icons Qt_Example (/wiki/index.php?
title=Qt_Example)

</translate>< translate>

Use QFileDialog for write the file
Complete code:< /translate>

Page 150 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

-*- coding: utf-8 -*-

import PySide

from PySide import QtGui ,QtCore

from PySide.QtGui import *

from PySide.QtCore import *

path = FreeCAD.ConfigGet("UserAppData")

try:

 SaveName = QFileDialog.getSaveFileName(None,QString.fromLocal8Bit("Save a file txt"),path,

 "*.txt") # PyQt4

"here the text displayed

 on windows" "here the filter (extension)"

except Exception:

 SaveName, Filter = PySide.QtGui.QFileDialog.getSaveFileName(None, "Save a file txt", path,

 "*.txt") # PySide

"here the text displayed

 on windows" "here the filter (extension)"

if SaveName == "": # if the name fi

le are not selected then Abord process

 App.Console.PrintMessage("Process aborted"+"\n")

else: # if the name fi

le are selected or created then

 App.Console.PrintMessage("Registration of "+SaveName+"\n") # text displayed

 to Report view (Menu > View > Report view checked)

 try: # detect error .

..

 file = open(SaveName, 'w') # open the file

selected to write (w)

 try: # if error detec

ted to write ...

 # here your code

 print "here your code"

 file.write(str(1)+"\n") # write the numb

er convert in text with (str())

 file.write("FreeCAD the best") # write the the

text with (" ")

 except Exception: # if error detec

ted to write

 App.Console.PrintError("Error write file "+"\n") # detect error .

.. display the text in red (PrintError)

 finally: # if error detec

ted to write ... or not the file is closed

 file.close() # if error detec

ted to write ... or not the file is closed

 except Exception:

 App.Console.PrintError("Error Open file "+SaveName+"\n") # detect error ... displ

ay the text in red (PrintError)

<translate>

Use QFileDialog for read the file
Complete code:< /translate>

Page 151 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

-*- coding: utf-8 -*-

import PySide

from PySide import QtGui ,QtCore

from PySide.QtGui import *

from PySide.QtCore import *

path = FreeCAD.ConfigGet("UserAppData")

OpenName = ""

try:

 OpenName = QFileDialog.getOpenFileName(None,QString.fromLocal8Bit("Read a file txt"),path,

 "*.txt") # PyQt4

"here the text displayed

 on windows" "here the filter (extension)"

except Exception:

 OpenName, Filter = PySide.QtGui.QFileDialog.getOpenFileName(None, "Read a file txt", path,

 "*.txt") #PySide

"here the text displayed

 on windows" "here the filter (extension)"

if OpenName == "": # if the name fi

le are not selected then Abord process

 App.Console.PrintMessage("Process aborted"+"\n")

else:

 App.Console.PrintMessage("Read "+OpenName+"\n") # text displayed

 to Report view (Menu > View > Report view checked)

 try: # detect error t

o read file

 file = open(OpenName, "r") # open the file

selected to read (r) # (rb is binary)

 try: # detect error .

..

 # here your code

 print "here your code"

 op = OpenName.split("/") # decode the pat

h

 op2 = op[-1].split(".") # decode the fil

e name

 nomF = op2[0] # the file name

are isolated

 App.Console.PrintMessage(str(nomF)+"\n") # the file name

are displayed

 for ligne in file: # read the file

 X = ligne.rstrip('\n\r') #.split() # decode the lin

e

 print X # print the line

 in report view other method

 # (Menu > Edit >

 preferences... > Output window > Redirect internal Python output (and errors) to report view

checked)

 except Exception: # if error detec

ted to read

 App.Console.PrintError("Error read file "+"\n") # detect error .

.. display the text in red (PrintError)

 finally: # if error detec

ted to read ... or not error the file is closed

 file.close() # if error detec

ted to read ... or not error the file is closed

 except Exception: # if one error d

etected to read file

 App.Console.PrintError("Error in Open the file "+OpenName+"\n") # if one error d

etected ... display the text in red (PrintError)

<translate>

Use QColorDialog for get the color
Complete code:< /translate>

Page 152 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

-*- coding: utf-8 -*-

https://deptinfo-ensip.univ-poitiers.fr/ENS/pyside-docs/PySide/QtGui/QColor.html

import PySide

from PySide import QtGui ,QtCore

from PySide.QtGui import *

from PySide.QtCore import *

path = FreeCAD.ConfigGet("UserAppData")

couleur = QtGui.QColorDialog.getColor()

if couleur.isValid():

 red = int(str(couleur.name()[1:3]),16) # decode hexadecimal to int()

 green = int(str(couleur.name()[3:5]),16) # decode hexadecimal to int()

 blue = int(str(couleur.name()[5:7]),16) # decode hexadecimal to int()

 print couleur #

 print "hexadecimal ",couleur.name() # color format hexadecimal mode 16

 print "Red color ",red # color format decimal

 print "Green color ",green # color format decimal

 print "Blue color ",blue # color format decimal

<translate>

Some useful commands
</translate>

Page 153 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Here the code to display the icon on the '''pushButton''',

change the name to another button, ('''radioButton, checkBox''') as well as the path to the

icon,

 # Displays an icon on the button PushButton

 # self.image_01 = "C:\Program Files\FreeCAD0.13\icone01.png" # he name of the icon

 self.image_01 = path+"icone01.png" # the name of the icon

 icon01 = QtGui.QIcon()

 icon01.addPixmap(QtGui.QPixmap(self.image_01),QtGui.QIcon.Normal, QtGui.QIcon.Off)

 self.pushButton.setIcon(icon01)

 self.pushButton.setLayoutDirection(QtCore.Qt.RightToLeft) # This command reverses the d

irection of the button

path = FreeCAD.ConfigGet("UserAppData") # gives the user path

 path = FreeCAD.ConfigGet("AppHomePath") # gives the installation path of FreeCAD

This command reverses the horizontal button, right to left

self.pushButton.setLayoutDirection(QtCore.Qt.RightToLeft) # This command reverses the horizont

al button

Displays an info button

self.pushButton.setToolTip(_translate("MainWindow", "Quitter la fonction", None)) # Displays a

n info button

This function gives a color button

self.pushButton.setStyleSheet("background-color: red") # This function gives a color button

This function gives a color to the text of the button

self.pushButton.setStyleSheet("color : #ff0000") # This function gives a color to the text of

the button

combinaison des deux, bouton et texte

self.pushButton.setStyleSheet("color : #ff0000; background-color : #0000ff;") # combination

of the two, button, and text

replace the icon in the main window

MainWindow.setWindowIcon(QtGui.QIcon('C:\Program Files\FreeCAD0.13\View-C3P.png'))

connects a lineEdit on execute

self.lineEdit.returnPressed.connect(self.execute) # connects a lineEdit on "def execute" after

 validation on enter

self.lineEdit.textChanged.connect(self.execute) # connects a lineEdit on "def execute" with

each keystroke on the keyboard

display text in a lineEdit

self.lineEdit.setText(str(val_X)) # Displays the value in the lineEdit (convert to string)

extract the string contained in a lineEdit

 val_X = self.lineEdit.text() # extract the (string) string contained in lineEdit

 val_X = float(val_X0) # converted the string to an floating

 val_X = int(val_X0) # convert the string to an integer

This code allows you to change the font and its attributes

 font = QtGui.QFont()

 font.setFamily("Times New Roman")

 font.setPointSize(10)

 font.setWeight(10)

 font.setBold(True) # same result with tags "your text" (in quotes)

 self.label_6.setFont(font)

 self.label_6.setObjectName("label_6")

 self.label_6.setStyleSheet("color : #ff0000") # This function gives a color to the text

 self.label_6.setText(_translate("MainWindow", "Select a view", None))

<translate>

By using the characters with accents, where you get the error :

Several solutions are possible.

UnicodeDecodeError: 'utf8' codec can't decode bytes in position 0-2:
invalid data< /translate>

conversion from a lineEdit

App.activeDocument().CopyRight.Text = str(unicode(self.lineEdit_20.text() , 'ISO-8859-1').enco

de('UTF-8'))

DESIGNED_BY = unicode(self.lineEdit_01.text(), 'ISO-8859-1').encode('UTF-8')

<translate> or with the procedure< /translate>

def utf8(unio):

 return unicode(unio).encode('UTF8')

UnicodeEncodeError: 'ascii' codec can't encode character u'\xe9' in

Page 154 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Line drawing function (/wiki/index.php?
title=Line_drawing_function)

next: Licence > (/wiki/index.php?title=Licence)

position 9: ordinal not in range(128)

conversion

a = u"Nom de l'élément : "

f.write('''a.encode('iso-8859-1')'''+str(element_)+"\n")

<translate> or with the procedure< /translate>

def iso8859(encoder):

 return unicode(encoder).encode('iso-8859-1')

<translate> or< /translate>

iso8859(unichr(176))

<translate> or < /translate>

unichr(ord(176))

<translate> or < /translate>

uniteSs = "mm"+iso8859(unichr(178))

print unicode(uniteSs, 'iso8859')

<translate>

Index
(/wiki/index.php?title=Online_Help_Toc)

</translate>

Developing applications for FreeCAD
<translate>

Statement of the main developer
I know that the discussion on the "right" licence for open source occupied a
significant portion of internet bandwidth and so is here the reason why, in
my opinion, FreeCAD should have this one.

I chose the LGPL (http://en.wikipedia.org/wiki/LGPL) for the project and I
know the pro and cons about the LGPL and will give you some reasons for
that decision.

FreeCAD is a mixture of a library and an application, so the GPL would be a
little bit strong for that. It would prevent writing commercial modules for
FreeCAD because it would prevent linking with the FreeCAD base libs. You
may ask why commercial modules at all? Therefore Linux is good example.
Would Linux be so successful when the GNU C Library would be GPL and
therefore prevent linking against non-GPL applications? And although I love
the freedom of Linux, I also want to be able to use the very good NVIDIA 3D
graphic driver. I understand and accept the reason NVIDIA does not wish to
give away driver code. We all work for companies and need payment or at
least food. So for me, a coexistence of open source and closed source
software is not a bad thing, when it obeys the rules of the LGPL. I would like
to see someone writing a Catia import/export processor for FreeCAD and
distribute it for free or for some money. I don't like to force him to give
away more than he wants to. That wouldn't be good neither for him nor for
FreeCAD.

Nevertheless this decision is made only for the core system of FreeCAD.
Every writer of an application module may make his own decision.

Page 155 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Licences used in FreeCAD
FreeCAD uses two different licenses, one for the application itself, and one
for the documentation:

Lesser General Public Licence, version 2 or superior (LGPL2+)
(http://en.wikipedia.org/wiki/LGPL)
For the core libs as stated in the .h and .cpp files in src/App
src/Gui src/Base and all modules (/wiki/index.php?
title=Workbenches) in src/Mod and for the executable as stated in
the .h and .cpp files in src/main. The icons and other graphic parts
are also LGPL.
Open Publication Licence
(http://en.wikipedia.org/wiki/Open_Publication_License)
For the documentation on http://www.freecadweb.org
(http://www.freecadweb.org) when not marked differently by the
author

See FreeCAD's debian copyright file (http://sourceforge.net/p/free-
cad/code/ci/master/tree/package/debian/copyright) for more details
about the licenses used by the different components found in FreeCAD

Impact of the licences
Private users

Private users can use FreeCAD free of charge and can do basically whatever
they want to do with it: use it, copy it, modify it, redistribute it. They are
always master of their data, they are not forced to update FreeCAD, change
their usage of FreeCAD. Using FreeCAD doesn't bind them to any kind of
contract or obligation.
Professional users

Can use FreeCAD freely, for any kind of private or professional work. They
can customize the application as they wish. They can write open or closed
source extensions to FreeCAD. They are always master of their data, they are
not forced to update FreeCAD, change their usage of FreeCAD. Using FreeCAD
doesn't bind them to any kind of contract or obligation.
Open Source developers

Can use FreeCAD as the groundwork for own extension modules for special
purposes. They can choose either the GPL or the LGPL to allow the use of
their work in proprietary software or not.
Commercial developers

Commercial developers can use FreeCAD as the groundwork for their own
extension modules for special purposes and are not forced to make their
modules open source. They can use all modules which use the LGPL. They
are allowed to distribute FreeCAD along with their proprietary software.
They will get the support of the author(s) as long as it is not a one way
street.

OpenCasCade License side effects (for FreeCAD version 0.13 and
older)
The following is no more applicable since version 0.14, since both FreeCAD
and OpenCasCade are now fully LGPL.

Up to Version 0.13 FreeCAD is delivered as GPL2+, although the source itself
is under LGPL2+. Thats because of linkage of Coin3D (GPL2) and PyQt(GPL).
Starting with 0.14 we will be completely GPL free. PyQt will be replaced by
PySide, and Coin3D was re-licensed under BSD. One problem, we still have
to face, license-wise, the OCTPL (Open CASCADE Technology Public License)

Page 156 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Dialog creation (/wiki/index.php?
title=Dialog_creation)

next: Tracker > (/wiki/index.php?title=Tracker)

(http://www.opencascade.org/getocc/license/). Its a License mostly LGPL
similar, with certain changes. On of the originators, Roman Lygin, elaborated
on the License on his Blog
(http://opencascade.blogspot.de/2008/12/license-to-kill-license-to-
use.html). The home-brew OCTPL license leads to all kind of side effects for
FreeCAD, which where widely discussed on different forums and mailing
lists, e.g. on OpenCasCade forum itself
(http://www.opencascade.org/org/forum/thread_15859/?forum=3). I will
link here some articles for the biggest problems.
GPL2/GPL3/OCTLP incompatibility

We first discovered the problem by a discussion on the FSF
(http://www.fsf.org/) high priority project discussion list
(https://groups.google.com/forum/#!topic/polignu/XRergtwsm80). It was
about a library we look at, which was licensed with GPL3. Since we linked
back then with Coin3D, with GPL2 only, we was not able to adopt that lib.
Also the OCTPL is considered GPL incompatible
(http://www.opencascade.org/occt/faq/). This Libre Graphics World article
"LibreDWG drama: the end or the new
beginning?" (http://libregraphicsworld.org/blog/entry/libredwg-drama-
the-end-or-the-new-beginning) shows up the drama of LibreDWG project
not acceptably in FreeCAD or LibreCAD.
Debian

The incompatibility of the OCTPL was discussed on the debian legal list
(http://lists.debian.org/debian-legal/2009/10/msg00000.html) and lead to
a bug report on the FreeCAD package (http://bugs.debian.org/cgi-
bin/bugreport.cgi?bug=617613) which prevent (ignor-tag) the transition from
debian-testing to the main distribution. But its also mentioned thats a
FreeCAD, which is free of GPL code and libs, would be acceptably. With a re-
licensed Coin3D V4 and a substituted PyQt we will hopefully reach GPL free
with the 0.14 release.
Fedora/RedHat non-free

In the Fedora project OpenCasCade is listed "non-free". This means basically
it won't make it into Fedora or RedHat. This means also FreeCAD won't make
it into Fedora/RedHat until OCC is changing its license. Here the links to the
license evaluation:

◾ Discussion on the Fedora-legal-list
(http://lists.fedoraproject.org/pipermail/legal/2011-
September/001713.html)

◾ License review entry in the RedHat bug tracker
(https://bugzilla.redhat.com/show_bug.cgi?id=458974#c10)

The main problem they have AFIK is that the OCC license demand non
discriminatory support fees if you want to do paid support. It has nothing to
do with "free" or OpenSource, its all about RedHat's business model!

Index
(/wiki/index.php?title=Online_Help_Toc)

</translate>

< translate> The adress of our bug tracker is:

http://www.freecadweb.org/tracker (http://www.freecadweb.org/tracker)

There you can report bugs, submit feature requests, patches, or request to
merge your branch if you developed something using git. The tracker is
divided into modules, so please be specific and file your request in the
appropriate subsection. In case of doubt, leave it in the "FreeCAD" section.

Page 157 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Licence (/wiki/index.php?title=Licence)
next: CompileOnWindows > (/wiki/index.php?
title=CompileOnWindows)

Please before creating tickets, always first discuss bugs in the Help forum
(http://forum.freecadweb.org/viewforum.php?f=3) and feature requests in
the Open discussion forum (http://forum.freecadweb.org/viewforum.php?
f=8).

Reporting bugs
If you think you might have found a bug, you are welcome to report it there
so long as you have first discussed the matter in the appropriate forum. But
before reporting a bug, please check the following items:

◾ Make sure your bug is really a bug, that is, something that should be
working and that is not working. If you are not sure, don't hesitate to
explain your problem on the forum (http://forum.freecadweb.org/) and
ask what to do.

◾ Before submitting anything, read the frequently asked questions
(/wiki/index.php?title=FAQ), do a search on the forum
(http://forum.freecadweb.org/), and make sure the same bug hasn't
been reported before, by doing a search on the bug tracker.

◾ Describe as clearly as possible the problem, and how it can be
reproduced. If we can not verify the bug, we might not be able to fix it.

◾ Include all the information from the "Copy to Clipboard" button in the
Help (menu) -> About FreeCAD dialogue and do so from either the Part
or PartDesign workbench so that your data will include your OCC or OCE
version.

◾ Please file one separate report for each bug.
◾ If you are on a linux system and your bug causes a crash in FreeCAD,

you can try running a debug backtrace: From a terminal run gdb freecad
(assuming package gdb is installed), then, inside gdb, type run . FreeCAD
will then run. After the crash happens, type bt , to get the full backtrace.
Include that backtrace in your bug report.

Requesting features
If you want something to appear in FreeCAD that is not implemented yet, it
is not a bug but a feature request. You can also submit it on the same
tracker (file it as feature request instead of bug), but keep in mind there are
no guarantees that your wish will be fulfilled.

Submitting patches
In case you have programmed a bug fix, an extension or something else that
can be of public use in FreeCAD, create a patch using the Git diff tool and
submit it on the same tracker (file it as patch).

Requesting merge
If you have created a git branch containing changes that you would like to
see merged into the FreeCAD code, you can ask there to have your branch
reviewed and merged if the FreeCAD developers are OK with it. You must
first publish your branch to a public git repository (github,bitbucket,
sourceforge...) and then give the URL of your branch in your merge request.

Index

(/wiki/index.php?title=Online_Help_Toc)
</translate>

Page 158 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

This article explains step by step how to compile FreeCAD on Windows.

See also Compile on Windows with Visual Studio 2013 (/wiki/index.php?
title=Compile_on_Windows_with_VS2013)

Prerequisites

Required programs

◾ Git (http://git-scm.com/) There are a number of alternatives such as
GitCola, Tortoise Git, and others.

◾ CMake (http://www.cmake.org/cmake/resources/software.html)
version 2.x.x or Cmake 3.x.x

◾ Python >2.5 (This is only required if NOT using the Libpack. The Libpack
comes with a minimal Python(2.7.x) suitable for compiling and running
FreeCAD)

Source Code
Using Git (Preferred)

To create a local tracking branch and download the source code you need to
open a terminal(command prompt) and cd to the directory you want the
source, then type:

git clone https://github.com/FreeCAD/FreeCAD.git free-cad-code

Compiler

On Windows, the default compiler is M$ Visual Studio, be it the Express or
Full 2008, 2012, or 2013 versions. You will also need to install the Windows
Platform SDK to get several required libraries (e.g. Windows.h), though they
may not be required with M$ compilers (either full or express).

For those who want to avoid installing the huge Visual Studio for the mere
purpose of having a compiler, see CompileOnWindows - Reducing Disk
Footprint (/wiki/index.php?
title=CompileOnWindows_-_Reducing_Disk_Footprint).

Note
Though it may be possible to use Cygwin or MinGW gcc it's not tested or
ported so far.

Third Party Libraries

You will need all of the Third Party Libraries (/wiki/index.php?
title=Third_Party_Libraries) to successfully compile FreeCAD. If you use the
M$ compilers it is recommended to install a FreeCAD LibPack
(http://sourceforge.net/projects/free-cad/files/FreeCAD%20LibPack/),
which provides all of the required libraries to build FreeCAD in Windows.
You will need the Libpack for your architecture and compiler. FreeCAD
currently supplies Libpack Version11 for x32 and x64, for VS9 2008, VS11 2012,
and VS12 2013.

Optional programs

◾ NSIS (http://sourceforge.net/projects/nsis/) Windows installer (note:
formerly, WiX (http://wixtoolset.org/) installer was used - now under
transition to NSIS) - if you want to make msi installer

System Path Configuration

Inside your system path be sure to set the correct paths to the following
programs:

Page 159 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

◾ git (not tortoiseGit, but git.exe) This is necessary for Cmake to properly
update the "About FreeCAD" information in the version.h file which
allows FreeCAD to report the proper version in About FreeCAD from the
help menu.

◾ Optionally you can include the Libpack in your system path. This is
useful if you plan to build multiple configurations/versions of FreeCAD,
you will need to copy less files as explained later in the build process.

To add to your system path:

◾ Start menu -> Right click on Computer -> Properties -> Advanced system
settings

◾ Advanced tab -> Environment Variables...
◾ Add the PATH/TO/GIT to the PATH
◾ It should be separated from the others with a semicolon `;`

Configuration with CMake

The switch to CMake

Warning
Since FreeCAD version 0.9 we have stopped providing .vcproj files.

Currently, FreeCAD uses the CMake build system to generate build and make
files that can be used between different operating systems and compilers. If
you want build former versions of FreeCAD (0.8 and older) see Building older
versions later in this article.

We switched because it became more and more painful to maintain project
files for 30+ build targets and x compilers. CMake gives us the possibility to
support alternative IDEs, like Code::Blocks, Qt Creator and Eclipse CDT. The
main compiler is still M$ VC9 Express, though. But we plan for the future a
build process on Windows without proprietary compiler software.

CMake

The first step to build FreeCAD with CMake is to configure the environment.
There are two ways to do it:

◾ Using the LibPack
◾ Installing all the needed libraries and let CMake find them

The following process will assume you are using the LipPack. The second
option may be discussed in Options for the Build Process.

Configure CMake using GUI

◾ Open the CMake GUI
◾ Specify the source folder
◾ Specify the build folder
◾ Click Configure
◾ Specify the generator according to the IDE that you'll use.

This will begin configuration and should fail because the location of
FREECAD_LIBPACK_DIR is unset.

◾ Expand the FREECAD category and set FREECAD_LIBPACK_DIR to the
correct location

◾ Check FREECAD_USE_EXTERNAL_PIVY
◾ Optionally Check FREECAD_USE_FREETYPE this is required to use the

Draft WB's Shape String functionality

Page 160 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

◾ Click Configure again
◾ There should be no errors
◾ Click Generate
◾ Close CMake
◾ Copy libpack\bin folder into the new build folder CMake created

Options for the Build Process

The CMake build system gives us a lot more flexibility over the build
process. That means we can switch on and off some features or modules. It's
in a way like the Linux kernel build. You have a lot of switches to determine
the build process.

Here is the description of some of these switches. They will most likely
change a lot in the future because we want to increase the build flexibility a
lot more.

Link table

Variable name Description Default

FREECAD_LIBPACK_USE
Switch the usage
of the FreeCAD
LibPack on or off

On Win32
on,
otherwise
off

FREECAD_LIBPACK_DIR Directory where
the LibPack is

FreeCAD
SOURCE
dir

FREECAD_BUILD_GUI
Build FreeCAD with
all Gui related
modules

ON

FREECAD_BUILD_CAM
Build the CAM
module,
experimental!

OFF

FREECAD_BUILD_INSTALLER
Create the project
files for the
Windows installer.

OFF

FREECAD_BUILD_DOXYGEN_DOCU

Create the project
files for source
code
documentation.

OFF

FREECAD_MAINTAINERS_BUILD

Switch on stuff
needed only when
you do a Release
build.

OFF

If you are building with Qt Creator, jump to Building with Qt Creator,
otherwise proceed to Building with Visual Studio 9 2008.

Building FreeCAD

Page 161 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Depending on your current setup, the process for building FreeCAD will be
slightly different. This is due to the differences in available software and
software versions for each operating system.

The following procedure will work for compiling on Windows Vista/7/8, for
XP an alternate VS tool set is required for VS 2012 and 2013, which has not
been tested successfully with the current Libpacks. To target XP(both x32
and x64) it is recommended to use VS2008 and Libpack
FreeCADLibs_11.0_x86_VC9.7z

Building with Visual Studio 12 2013

Make sure to specify Visual Studio 12 x64(or the alternate C-Compiler you
are using) as the generator in CMake before you continue.

◾ Start Visual Studio 12 2013 by clicking on the desktop icon created at
installation.

◾ Open the project by:
File -> Open -> Project/Solution

◾ Open FreeCAD_Trunk.sln from the build folder CMake created

◾ Switch the Solutions Configuration drop down at the top to Release X64
This may take a while depending on your sytem

◾ Build -> Build Solution

◾ This will take a long time...
If you don't get any errors you are done. Exit Visual Studio and start FreeCAD
by double clicking the FreeCAD icon in the bin folder of the build directory.

Building with Visual Studio 9 2008

Warning
Visual C++ Express 2008 does not support 64-bit compilation. There is a
workaround here (http://jenshuebel.wordpress.com/2009/02/12/visual-c-
2008-express-edition-and-64-bit-targets/)

Make sure to specify Visual Studio 9 2008 as the generator in CMake before
you continue.

◾ Open Visual Studio 9 2008 or Visual C++ Express 2008
◾ File -> Open -> Project/Solution
◾ Open FreeCAD_Trunk.sln from the build folder CMake created
◾ Switch the Solutions Configuration dropdown at the top to Release
◾ Build -> Build Solution to build
◾ Wait until the Build is finished (will take a while)

After Building

◾ Debug -> Start without Debugging
◾ Click popup menu under Executable File Name and choose Browse
◾ Go to the build\bin folder and choose FreeCAD.exe
◾ You are done!

Building with Qt Creator
Installation and configuration of Qt Creator

◾ Download and install Qt Creator (https://qt-project.org/downloads)
◾ Tools -> Options -> Text Editor -> Behavior tab:

◾ File Encodings -> Default Encodings:

Page 162 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

◾ Set to: ISO-8859-1 /...csISOLatin1 (Certain characters create
errors/warnings with Qt Creator if left set to UTF-8. This seems to
fix it.)

◾ Tools -> Options -> Build & Run:
◾ CMake tab

◾ Fill Executable box with path to cmake.exe

◾ Kits tab
◾ Name: MSVC 2008
◾ Compiler: Microsoft Visual C++ Compiler 9.0 (x86)
◾ Debugger: Auto detected...
◾ Qt version: None

◾ General tab
◾ Uncheck: Always build project before deploying it
◾ Uncheck: Always deploy project before running it

Import project and Build

◾ File -> Open File or Project
◾ Open CMakeLists.txt which is in the top level of the source
◾ This will start CMake
◾ Choose build directory and click next
◾ Set generator to NMake Generator (MSVC 2008)
◾ Click Run CMake. Follow the instructions depicted above to configure

CMake to your liking.
Now FreeCAD can be built

◾ Build -> Build All
◾ This will take a long time...

Once complete, it can be run: There are 2 green triangles at the bottom left.
One is debug. The other is run. Pick whichever you want.

Command line build

Here an example how to build FreeCAD from the Command line:

 rem @echo off

 rem Build script, uses vcbuild to completetly build FreeCAD

 rem update trunc

 d:

 cd "D:_Projekte\FreeCAD\FreeCAD_0.9"

 "C:\Program Files (x86)\Subversion\bin\svn.exe" update

 rem set the aprobiated Variables here or outside in the system

 set PATH=C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem

 set INCLUDE=

 set LIB=

 rem Register VS Build programms

 call "C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\vcvarsall.bat"

 rem Set Standard include paths

 set INCLUDE=%INCLUDE%;%FrameworkSDKDir%\include

 set INCLUDE=%INCLUDE%;C:\Program Files\Microsoft SDKs\Windows\v6.0A\Include

 rem Set lib Pathes

 set LIB=%LIB%;C:\Program Files\Microsoft SDKs\Windows\v6.0A\Lib

 set LIB=%LIB%;%PROGRAMFILES%\Microsoft Visual Studio\VC98\Lib

 rem Start the Visuall Studio build process

 "C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\vcpackages\vcbuild.exe" "D:_Projekte\

FreeCAD FreeCAD_0.9_build\FreeCAD_trunk.sln" /useenv

Page 163 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Building older versions

Using LibPack

To make it easier to get FreeCAD compiled, we provide a collection of all
needed libraries. It's called the LibPack (/wiki/index.php?
title=Third_Party_Libraries). You can find it on the download page
(http://sourceforge.net/project/showfiles.php?group_id=49159) on
sourceforge.

You need to set the following environment variables:

FREECADLIB = "D:\Wherever\LIBPACK"

QTDIR = "%FREECADLIB%"

Add "%FREECADLIB%\bin" and "%FREECADLIB%\dll" to the system PATH
variable. Keep in mind that you have to replace "%FREECADLIB%" with the
path name, since Windows does not recursively replace environment
variables.
Directory setup in Visual Studio

Some search path of Visual Studio need to be set. To change them, use the
menu Tools→Options→Directory
Includes

Add the following search path to the include path search list:

◾ %FREECADLIB%\include
◾ %FREECADLIB%\include\Python
◾ %FREECADLIB%\include\boost
◾ %FREECADLIB%\include\xercesc
◾ %FREECADLIB%\include\OpenCascade
◾ %FREECADLIB%\include\OpenCV
◾ %FREECADLIB%\include\Coin
◾ %FREECADLIB%\include\SoQt
◾ %FREECADLIB%\include\QT
◾ %FREECADLIB%\include\QT\Qt3Support
◾ %FREECADLIB%\include\QT\QtCore
◾ %FREECADLIB%\include\QT\QtGui
◾ %FREECADLIB%\include\QT\QtNetwork
◾ %FREECADLIB%\include\QT\QtOpenGL
◾ %FREECADLIB%\include\QT\QtSvg
◾ %FREECADLIB%\include\QT\QtUiTools
◾ %FREECADLIB%\include\QT\QtXml
◾ %FREECADLIB%\include\Gts
◾ %FREECADLIB%\include\zlib

Libs

Add the following search path to the lib path search list:

◾ %FREECADLIB%\lib
Executables

Add the following search path to the executable path search list:

◾ %FREECADLIB%\bin

Page 164 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

◾ TortoiseSVN binary installation directory, usually "C:\Programm
Files\TortoiseSVN\bin", this is needed for a distribution build when
SubWVRev.exe is used to extract the version number from Subversion.

Python needed

During the compilation some Python scripts get executed. So the Python
interpreter has to function on the OS. Use a command box to check it. If the
Python library is not properly installed you will get an error message like
Cannot find python.exe. If you use the LibPack you can also use the
python.exe in the bin directory.
Special for VC8

When building the project with VC8, you have to change the link information
for the WildMagic library, since you need a different version for VC6 and VC8.
Both versions are supplied in LIBPACK/dll. In the project properties for
AppMesh change the library name for the wm.dll to the VC8 version. Take
care to change it in Debug and Release configuration.

Compile

After you conform to all prerequisites the compilation is - hopefully - only a
mouse click in VC

After Compiling

To get FreeCAD up and running from the compiler environment you need to
copy a few files from the LibPack (/wiki/index.php?
title=Third_Party_Libraries) to the bin folder where FreeCAD.exe is installed
after a successful build:

◾ python.exe and python_d.exe from LIBPACK/bin
◾ python25.dll and python25_d.dll from LIBPACK/bin
◾ python25.zip from LIBPACK/bin
◾ make a copy of Python25.zip and rename it to Python25_d.zip
◾ QtCore4.dll from LIBPACK/bin
◾ QtGui4.dll from LIBPACK/bin
◾ boost_signals-vc80-mt-1_34_1.dll from LIBPACK/bin
◾ boost_program_options-vc80-mt-1_34_1.dll from LIBPACK/bin
◾ xerces-c_2_8.dll from LIBPACK/bin
◾ zlib1.dll from LIBPACK/bin
◾ coin2.dll from LIBPACK/bin
◾ soqt1.dll from LIBPACK/bin
◾ QtOpenGL4.dll from LIBPACK/bin
◾ QtNetwork4.dll from LIBPACK/bin
◾ QtSvg4.dll from LIBPACK/bin
◾ QtXml4.dll from LIBPACK/bin

When using a LibPack (/wiki/index.php?title=Third_Party_Libraries) with a
Python version older than 2.5 you have to copy two further files:

◾ zlib.pyd and zlib_d.pyd from LIBPACK/bin/lib. This is needed by python
to open the zipped python library.

◾ _sre.pyd and _sre_d.pyd from LIBPACK/bin/lib. This is needed by
python for the built in help system.

If you don't get it running due to a Python error it is very likely that one of
the zlib*.pyd files is missing.

Page 165 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Tracker (/wiki/index.php?title=Tracker)
next: CompileOnUnix > (/wiki/index.php?title=CompileOnUnix)

Alternatively, you can copy the whole bin folder of libpack into bin folder of
the build. This is easier, but takes time and disk space. This can be substited
by making links instead of copying files, see CompileOnWindows - Reducing
Disk Footprint (/wiki/index.php?
title=CompileOnWindows_-_Reducing_Disk_Footprint#avoiding_copying_any_libpack_files_to_launch_FreeCAD)

Additional stuff

If you whant to build the source code documentation you need DoxyGen
(http://www.stack.nl/~dimitri/doxygen/).

To create an intstaller package you need WIX (http://wix.sourceforge.net/).

During the compilation some Python scripts get executed. So the Python
interpreter has to work properly.

For more details have also a look to README.Linux in your sources.

First of all you should build the Qt plugin that provides all custom widgets
of FreeCAD we need for the Qt Designer. The sources are located under

//src/Tools/plugins/widget//.

So far we don't provide a makefile -- but calling

qmake plugin.pro

creates it. Once that's done, calling make will create the library

//libFreeCAD_widgets.so//.

To make this library known to your Qt Designer you have to copy the file to

//$QTDIR/plugin/designer//.

References

Index

(/wiki/index.php?title=Online_Help_Toc)

On recent linux distributions, FreeCAD is generally easy to build, since all
dependencies are usually provided by the package manager. It basically
involves 3 steps:

1. Getting the FreeCAD source code
2. Getting the dependencies (packages FreeCAD depends upon)
3. Configure with "cmake" and Compile with "make"

Below, you'll find detailed explanations of the whole process and
particularities you might encounter. If you find anything wrong or out-of-
date in the text below (Linux distributions change often), or if you use a
distribution which is not listed, please help us correcting it.

Getting the source
Before you can compile FreeCAD, you need the source code. There are 3
ways to get it:

Git

The quickest and best way to get the code is to clone the read-only git
repository now hosted on GitHub (you need the git (http://git-scm.com/)
package installed):

git clone https://github.com/FreeCAD/FreeCAD.git free-cad-code

Page 166 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

This will place a copy of the latest version of the FreeCAD source code in a
new directory called "free-cad-code".

Github

The official FreeCAD repository is on Github: github.com/FreeCAD/FreeCAD
(https://github.com/FreeCAD/FreeCAD)

Source package

Alternatively you can download a source package, but they could be already
quite old so it's always better to get the latest sources via git or github.

◾ Official FreeCAD source packages (distribution-independent):
FreeCAD-0.17_pre.zip
(https://github.com/FreeCAD/FreeCAD/archive/0.17_pre.zip).

Getting the dependencies
To compile FreeCAD under Linux you have to install all libraries mentioned
in Third Party Libraries (/wiki/index.php?title=Third_Party_Libraries) first.
Please note that the names and availability of the libraries will depend on
your distribution. Note that if you don't use the most recent version of your
distribution, some of the packages below might be missing from your
repositories. In that case, look in the Older and non-conventional
distributions section below.

Skip to Compile FreeCAD

Debian and Ubuntu

On Debian-based systems (Debian, Ubuntu, Mint, etc...) it is quite easy to get
all needed dependencies installed. Most of the libraries are available via
apt-get or synaptic package manager.

◾ build-essential
◾ cmake
◾ python
◾ python-matplotlib
◾ libtool

either:

◾ libcoin60-dev (Debian Wheezy, Wheezy-backports, Ubuntu 13.04 and
before)

or:

◾ libcoin80-dev (Debian unstable(Jesse), testing, Ubuntu 13.10 and
forward)

◾ libsoqt4-dev
◾ libxerces-c-dev
◾ libboost-dev
◾ libboost-filesystem-dev
◾ libboost-regex-dev
◾ libboost-program-options-dev
◾ libboost-signals-dev
◾ libboost-thread-dev
◾ libboost-python-dev
◾ libqt4-dev
◾ libqt4-opengl-dev

Page 167 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

◾ qt4-dev-tools
◾ python-dev
◾ python-pyside
◾ pyside-tools

either:

◾ libopencascade-dev (official opencascade version)

or:

◾ liboce*-dev (opencascade community edition)
◾ oce-draw

◾ libeigen3-dev
◾ libqtwebkit-dev
◾ libshiboken-dev
◾ libpyside-dev
◾ libode-dev
◾ swig
◾ libzipios++-dev
◾ libfreetype6
◾ libfreetype6-dev

Additional instruction (http://forum.freecadweb.org/viewtopic.php?
f=4&t=5096#p40018) for libcoin80-dev Debian wheezy-backports, unstable,
testing, Ubuntu 13.10 and forward

Note that liboce*-dev includes the following libraries:

◾ liboce-foundation-dev
◾ liboce-modeling-dev
◾ liboce-ocaf-dev
◾ liboce-visualization-dev
◾ liboce-ocaf-lite-dev

You may have to install these packages by individual name.

Optionally you can also install these extra packages:

◾ libsimage-dev (to make Coin to support additional image file formats)
◾ checkinstall (to register your installed files into your system's package

manager, so yo can easily uninstall later)
◾ python-pivy (needed for the 2D Drafting module)
◾ python-qt4 (needed for the 2D Drafting module)
◾ doxygen and libcoin60-doc (if you intend to generate source code

documentation)
◾ libspnav-dev (for 3Dconnexion devices support like the Space Navigator

or Space Pilot)

Fedora

You need the following packages:

◾ gcc-c++ (or possibly another C++ compiler?)
◾ cmake
◾ doxygen
◾ swig

Page 168 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

◾ gettext
◾ dos2unix
◾ desktop-file-utils
◾ libXmu-devel
◾ freeimage-devel
◾ mesa-libGLU-devel
◾ OCE-devel
◾ python
◾ python-devel
◾ python-pyside-devel
◾ pyside-tools
◾ boost-devel
◾ tbb-devel
◾ eigen3-devel
◾ qt-devel
◾ qt-webkit-devel
◾ ode-devel
◾ xerces-c
◾ xerces-c-devel
◾ opencv-devel
◾ smesh-devel
◾ coin3-devel (if coin2 is the latest available for your version of Fedora,

use packages from http://www.zultron.com/rpm-repo/
(http://www.zultron.com/rpm-repo/))

◾ soqt-devel
◾ freetype
◾ freetype-devel

And optionally:

◾ libspnav-devel (for 3Dconnexion devices support like the Space
Navigator or Space Pilot)

◾ pivy (https://bugzilla.redhat.com/show_bug.cgi?id=458975
(https://bugzilla.redhat.com/show_bug.cgi?id=458975) Pivy is not
mandatory but needed for the Draft module)

Gentoo

Easiest way to check which packages are needed to compile FreeCAD is to
check via portage:

emerge -pv freecad

This should give a nice list of extra packages that you need installed on your
system.

OpenSUSE

You need the following packages:

◾ gcc
◾ cmake
◾ OpenCASCADE-devel
◾ libXerces-c-devel

Page 169 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

◾ python-devel
◾ libqt4-devel
◾ libshiboken-devel
◾ python-pyside-devel
◾ python-pyside-tools
◾ Coin-devel
◾ SoQt-devel
◾ boost-devel
◾ libode-devel
◾ libQtWebKit-devel
◾ libeigen3-devel
◾ gcc-fortran
◾ freetype2
◾ freetype2-devel

For FreeCAD 0.14 stable and 0.15 unstable you need to add Eigen3 and swig
libraries, that don't seem to be in standard repos. You can get them with a
one-click install here:

◾ Eigen3 (http://software.opensuse.org/search?
q=eigen3&baseproject=openSUSE%
3A12.1&lang=en&exclude_debug=true)

◾ swig (http://software.opensuse.org/search?
q=swig&baseproject=openSUSE%3A12.1&lang=en&exclude_debug=true)

Also, note that the Eigen3 Library from Factory Education was causing
problems sometimes, so use the one from the KDE 4.8 Extra repo

Arch Linux

You will need the following libraries from the official repositories:

◾ boost-libs
◾ curl
◾ hicolor-icon-theme
◾ libspnav
◾ opencascade
◾ python2-pivy
◾ python2-matplotlib
◾ python2-pyside
◾ python2-shiboken
◾ qtwebkit
◾ shared-mime-info
◾ xerces-c
◾ boost
◾ cmake
◾ coin
◾ desktop-file-utils
◾ eigen
◾ gcc-fortran
◾ swig

Page 170 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

◾ xerces-c
Also, make sure to check the AUR for any missing packages that are not on
the repositories, currently:

◾ python2-pyside-tools

Older and non-conventional distributions

On other distributions, we have very few feedback from users, so it might be
harder to find the required packages. Try first locating the required libraries
mentioned in Third Party Libraries (/wiki/index.php?
title=Third_Party_Libraries). Beware that some of them might have a slightly
different package name in your distribution (such as name, libname, name-
dev, name-devel, etc...).

You also need the GNU gcc compiler
(http://en.wikipedia.org/wiki/GNU_Compiler_Collection) version equal or
above 3.0.0. g++ is also needed because FreeCAD is completely written in
C++. During the compilation some Python scripts get executed. So the
Python interpreter has to work properly. To avoid any linker problems
during the build process it is also a good idea to have the library paths
either in your LD_LIBRARY_PATH variable or in your ld.so.conf file. This is
normally already the case in recent distributions.

For more details have also a look to README.Linux in your sources.

Below is additional help for a couple of libraries that might not be present
in your distribution repositories
OpenCASCADE community edition (OCE)

OpenCasCade has recently been forked into a Community edition
(http://github.com/tpaviot/oce), which is much, much easier to build.
FreeCAD can use any version installed on your system, either the "official"
edition or the community edition. The OCE website contains detailed build
instructions.
OpenCASCADE official version

Note: You are advised to use the OpenCasCade community edition above,
which is easier to build, but this one works too. Not all Linux distributions
have an official OpenCASCADE package in their repositories. You have to
check for yourself if one is available for your distribution. At least from
Debian Lenny and Ubuntu Intrepid an official .deb package is provided. For
older Debian or Ubuntu releases you may get unofficial packages from here
(http://lyre.mit.edu/~powell/opencascade). To build your own private .deb
packages follow these steps:

wget http://lyre.mit.edu/~powell/opencascade/opencascade_6.2.0.orig.tar.gz

wget http://lyre.mit.edu/~powell/opencascade/opencascade_6.2.0-7.dsc

wget http://lyre.mit.edu/~powell/opencascade/opencascade_6.2.0-7.diff.gz

dpkg-source -x opencascade_6.2.0-7.dsc

Install OCC build-deps

sudo apt-get install build-essential devscripts debhelper autoconf automake libtool bison libx

11-dev tcl8.4-dev tk8.4-dev libgl1-mesa-dev libglu1-mesa-dev java-gcj-compat-dev libxmu-dev

#Build Opencascade packages. This takes hours and requires

at least 8 GB of free disk space

cd opencascade-6.2.0 ; debuild

Install the resulting library debs

sudo dpkg -i libopencascade6.2-0_6.2.0-7_i386.deb

libopencascade6.2-dev_6.2.0-7_i386.deb

Alternatively, you can download and compile the latest version from
opencascade.org (http://www.opencascade.org):

Install the package normally, be aware that the installer is a java program
that requires the official java runtime edition from Sun (package name: sun-
java6-jre), not the open-source java (gij) that is bundled with Ubuntu. Install
it if needed:

Page 171 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

sudo apt-get remove gij

sudo apt-get install sun-java6-jre

Be careful, if you use gij java with other things like a browser plugin, they
won't work anymore. If the installer doesn't work, try:

java -cp path_to_file_setup.jar <-Dtemp.dir=path_to_tmp_directory> run

Once the package is installed, go into the "ros" directory inside the
opencascade dir, and do

./configure --with-tcl=/usr/lib/tcl8.4 --with-tk=/usr/lib/tk8.4

Now you can build. Go back to the ros folder and do:

make

It will take a long time, maybe several hours.

When it is done, just install by doing

sudo make install

The library files will be copied into /usr/local/lib which is fine because
there they will be found automatically by any program. Alternatively, you
can also do

sudo checkinstall

which will do the same as make install but create an entry in your package
management system so you can easily uninstall later. Now clean up the
enormous temporary compilation files by doing

make clean

Possible error 1: If you are using OCC version 6.2, it is likely that the compiler
will stop right after the beginning of the "make" operation. If it happens,
edit the "configure" script, locate the CXXFLAGS="$CXXFLAGS " statement,
and replace it by CXXFLAGS="$CXXFLAGS -ffriend-injection -fpermissive".
Then do the configure step again.

Possible error 2: Possibly several modules (WOKSH, WOKLibs, TKWOKTcl,
TKViewerTest and TKDraw) will complain that they couldn't find the tcl/tk
headers. In that case, since the option is not offered in the configure script,
you will have to edit manually the makefile of each of those modules: Go
into adm/make and into each of the bad modules folders. Edit the Makefile,
and locate the lines CSF_TclLibs_INCLUDES = -I/usr/include and
CSF_TclTkLibs_INCLUDES = -I/usr/include and add /tcl8.4 and /tk8.4 to it so
they read: CSF_TclLibs_INCLUDES = -I/usr/include/tcl8.4 and
CSF_TclTkLibs_INCLUDES = -I/usr/include/tk8.4
SoQt

The SoQt library must be compiled against Qt4, which is the case in most
recent distributions. But at the time of writing this article there were only
SoQt4 packages for Debian itself available but not for all Ubuntu versions.
To get the packages built do the following steps:

wget http://ftp.de.debian.org/debian/pool/main/s/soqt/soqt_1.4.1.orig.tar.gz

wget http://ftp.de.debian.org/debian/pool/main/s/soqt/soqt_1.4.1-6.dsc

wget http://ftp.de.debian.org/debian/pool/main/s/soqt/soqt_1.4.1-6.diff.gz

dpkg-source -x soqt_1.4.1-6.dsc

sudo apt-get install doxygen devscripts fakeroot debhelper libqt3-mt-dev qt3-dev-tools libqt4-

opengl-dev

cd soqt-1.4.1

debuild

sudo dpkg -i libsoqt4-20_1.4.1-6_i386.deb libsoqt4-dev_1.4.1-6_i386.deb libsoqt-dev-common_1.4

.1-6_i386.deb

If you are on a 64bit system, you will probably need to change i386 by
amd64.
Pivy

Page 172 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Pivy is not needed to build FreeCAD or to run it, but it is needed for the 2D
Drafting module to work. If you are not going to use that module, you won't
need pivy. By November 2015 the obsolete version of Pivy included with
FreeCAD source code will no longer compile on many systems, due to its
age. If you cannot find Pivy in your distribution's packages repository ort
elsewhere, you can compile pivy yourself:

Pivy compilation instructions (/wiki/index.php?
title=Extra_python_modules#Pivy)

Compile FreeCAD

Using cMake

cMake is a newer build system which has the big advantage of being
common for different target systems (Linux, Windows, MacOSX, etc). FreeCAD
is now using the cMake system as its main building system. Compiling with
cMake is usually very simple and happens in 2 steps. In the first step, cMake
checks that every needed programs and libraries are present on your
system and sets up all that's necessary for the subsequent compilation. You
are given a few alternatives detailed below, but FreeCAD comes with
sensible defaults. The second step is the compiling itself, which produces
the FreeCAD executable. Changing any options for cmake away from their
default values, is much easier with cmake-gui or other graphical cmake
applications than with cmake on the command line, as the graphical
applications will give you interactive feed back.

Since FreeCAD is a heavy application, compiling can take a bit of time (about
10 minutes on a fast machine, 30 minutes (or more) on a slow one)
In-source building

If you are unsure then, due to its limitations, do not make an in-source
build, create an out-of-source build as explained in the next section.
However FreeCAD can be built in-source, which means that all the files
resulting from the compilation stay in the same folder as the source code.
This is fine if you are just looking at FreeCAD, and want to be able to remove
it easily by just deleting that folder. But in case you are planning to compile
it often, you are advised to make an out-of-source build, which offers many
more advantages. The following commands will compile FreeCAD:

$ cd freecad (the folder where you cloned the freecad source)

If you want to use your system's copy of Pivy, which you most commonly
will, then if not on Linux, set the compiler flag to use the correct pivy (via
FREECAD_USE_EXTERNAL_PIVY=1). Using external Pivy became the default for
Linux, during development of FreeCAD 0.16, so it does not need to be
manually set when compiling this version onwards, on Linux. Also, set the
build type to Debug if you want a debug build or Release if not. A Release
build will run much faster than a Debug build. Sketcher becomes very slow
with complex sketches if your FreeCAD is a Debug build. (NOTE: the space
and "." after the cmake flags are CRITICAL!):

For a Debug build

$ cmake -DFREECAD_USE_EXTERNAL_PIVY=1 -DCMAKE_BUILD_TYPE=Debug .

$ make

Or for a Release build

$ cmake -DFREECAD_USE_EXTERNAL_PIVY=1 -DCMAKE_BUILD_TYPE=Release .

$ make

Your FreeCAD executable will then reside in the "bin" folder, and you can
launch it with:

$./bin/FreeCAD

How to repair your source code directory after accidentally running an in-source build.

Page 173 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

This is a method, using Git, to repair your source code directory after
accidentally running an in-source build.

1) delete everything in your source base directory EXCEPT the hidden .git folder

2) In terminal 'git reset --hard HEAD'

//any remnants of an 'in source' build will be gone.

3) delete everything from your 'out of source' build directory and start over again with cmake

 and a full new clean build.

Out-of-source build

If you intend to follow the fast evolution of FreeCAD, building in a separate
folder is much more convenient. Every time you update the source code,
cMake will then intelligently distinguish which files have changed, and
recompile only what is needed. Out-of-source builds are specially handy
when using the Git system, because you can easily try other branches
without confusing the build system. To build out-of-source, simply create a
build directory, distinct from your FreeCAD source folder, and, from the
build folder, point cMake (or if using cmake-gui replace "cmake" in the code
below with "cmake-gui") to the source folder:

mkdir freecad-build

cd freecad-build

cmake ../freecad (or whatever the path is to your FreeCAD source folder)

make

The FreeCAD executable will then reside in the "bin" directory (within your
freecad-build directory).
Configuration options

There are a number of experimental or unfinished modules you may have to
build if you want to work on them. To do so, you need to set the proper
options for the configuration phase. Do it either on the command line,
passing -D <var>:<type>=<value> options to cMake or using one of the
availables gui-frontends (eg for Debian, packages cmake-qt-gui or cmake-
curses-gui). Changing any options for cmake away from their default values,
is much easier with cmake-gui or other graphical cmake applications than
with cmake on the command line, as they will give you interactive feed back.

As an example, to configure FreeCAD with the Assembly module built just
tick the box in a cmake gui application (e.g. cmake-gui) or on the command
line issue:

cmake -D FREECAD_BUILD_ASSEMBLY:BOOL=ON ''path-to-freecad-root''

Possible options are listed in FreeCAD's root CmakeLists.txt file.
Qt designer plugin

If you want to develop Qt stuff for FreeCAD, you'll need the Qt Designer
plugin that provides all custom widgets of FreeCAD. Go to

freecad/src/Tools/plugins/widget

So far we don't provide a makefile -- but calling

qmake plugin.pro

creates it. Once that's done, calling

make

will create the library libFreeCAD_widgets.so. To make this library known to
Qt Designer you have to copy the file to $QTDIR/plugin/designer
Doxygen

If you feel bold enough to dive in the code, you could take advantage to
build and consult Doxygen generated FreeCAD's Source documentation
(/wiki/index.php?title=Source_documentation)

Making a debian package

If you plan to build a Debian package out of the sources you need to install
those packages first:

Page 174 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

dh-make

devscripts

#optional, used for checking if packages are standard-compliant

lintian

To build a package open a console, simply go to the FreeCAD directory and
call

debuild

Once the package is built, you can use lintian to check if the package
contains errors

#replace by the name of the package you just created

lintian your-fresh-new-freecad-package.deb

Troubleshooting

Note for 64bit systems

When building FreeCAD for 64-bit there is a known issue with the
OpenCASCADE 64-bit package. To get FreeCAD running properly you might
need to run the ./configure script with the additional define _OCC64 set:

./configure CXXFLAGS="-D_OCC64"

For Debian based systems this workaround is not needed when using the
prebuilt package because there the OpenCASCADE package is built to set
internally this define. Now you just need to compile FreeCAD the same way
as described above.

Automatic build scripts
Here is all what you need for a complete build of FreeCAD. It's a one-script-
approach and works on a fresh installed distro. The commands will ask for
root password (for installation of packages) and sometime to acknowledge a
fingerprint for an external repository server or https-subversion repository.
These scripts should run on 32 and 64 bit versions. They are written for
different versions, but are also likely to run on a later version with or
without major changes.

If you have such a script for your preferred distro, please send it! We will
incorporate it into this article.

Ubuntu

These scripts provide a reliable way to install the correct set of
dependencies required to build and run FreeCAD on Ubuntu. They make use
of the FreeCAD Ubuntu PPA repositories, and should work on any version of
Ubuntu targeted by the PPA. The 'daily' PPA
(https://launchpad.net/~freecad-maintainers/+archive/ubuntu/freecad-
daily) targets recent versions of Ubuntu, and the 'stable' PPA
(https://launchpad.net/~freecad-maintainers/+archive/ubuntu/freecad-
stable) targets all officially supported versions of Ubuntu.

This script installs dependencies for the daily development snapshot of
FreeCAD.

#!/bin/sh

sudo add-apt-repository --enable-source ppa:freecad-maintainers/freecad-daily && sudo apt-get

update

Install the dependencies needed to build FreeCAD

sudo apt-get build-dep freecad-daily

Install the dependencies needed to run FreeCAD (and a build of FreeCAD itself)

sudo apt-get install freecad-daily

This script installs dependencies for the latest stable release of FreeCAD.
(For Ubuntu 12.04, omit "--enable-source" from the add-apt-repository
command.)

Page 175 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

#!/bin/sh

sudo add-apt-repository --enable-source ppa:freecad-maintainers/freecad-stable && sudo apt-get

 update

Install the dependencies needed to build FreeCAD

sudo apt-get build-dep freecad

Install the dependencies needed to run FreeCAD (and a build of FreeCAD itself)

sudo apt-get install freecad

(These scripts also install the PPA build of FreeCAD itself, as a side effect.
You could then uninstall that while leaving the dependencies in place.
However, leaving it installed will enable the package manager to keep the
set of dependencies up to date, which is useful if you are following the
development for a long time.)

After installing the dependencies, please see the generic instructions for
getting the source code, running CMake, and compiling. The following script
is an example of one way to do this.

#!/bin/sh

checkout the latest source

git clone https://github.com/FreeCAD/FreeCAD.git freecad

go to source dir

cd freecad

open cmake-gui window

cmake-gui .

build configuration

cmake .

build FreeCAD

make

OpenSUSE 12.2

No external Repositories are needed to compile FreeCAD 0.13 with this
release. However, there is an imcompatability with python3-devel which
needs to be removed. FreeCAD can be compiled from GIT similar to in
OpenSUSE 12.2

install needed packages for development

sudo zypper install gcc cmake OpenCASCADE-devel libXerces-c-devel \

python-devel libqt4-devel python-qt4 Coin-devel SoQt-devel boost-devel \

libode-devel libQtWebKit-devel libeigen3-devel gcc-fortran git swig

create new dir, and go into it

mkdir FreeCAD-Compiled

cd FreeCAD-Compiled

get the source

git clone https://github.com/FreeCAD/FreeCAD.git free-cad

Now you will have subfolder in this location called free-cad. It contains the source

make another dir for compilation, and go into it

mkdir FreeCAD-Build1

cd FreeCAD-Build1

build configuration

cmake ../free-cad

build FreeCAD

make

test FreeCAD

cd bin

./FreeCAD -t 0

Since you are using git, next time you wish to compile you do not have to
clone everything, just pull from git and compile once more

Page 176 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

go into free-cad dir created earlier

cd free-cad

pull

git pull

get back to previous dir

cd ..

Now repeat last few steps from before.

make another dir for compilation, and go into it

mkdir FreeCAD-Build2

cd FreeCAD-Build2

build configuration

cmake ../free-cad

build FreeCAD

make

test FreeCAD

cd bin

./FreeCAD -t 0

Debian Squeeze

get the needed tools and libs

sudo apt-get install build-essential python libcoin60-dev libsoqt4-dev \

libxerces-c2-dev libboost-dev libboost-date-time-dev libboost-filesystem-dev \

libboost-graph-dev libboost-iostreams-dev libboost-program-options-dev \

libboost-serialization-dev libboost-signals-dev libboost-regex-dev \

libqt4-dev qt4-dev-tools python2.5-dev \

libsimage-dev libopencascade-dev \

libsoqt4-dev libode-dev subversion cmake libeigen2-dev python-pivy \

libtool autotools-dev automake gfortran

checkout the latest source

git clone https://github.com/FreeCAD/FreeCAD.git freecad

go to source dir

cd freecad

build configuration

cmake .

build FreeCAD

make

test FreeCAD

cd bin

./FreeCAD -t 0

Fedora 22/23/24

Posted by user [PrzemoF (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=3666)] in the forum.

Page 177 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: CompileOnWindows (/wiki/index.php?
title=CompileOnWindows)

next: CompileOnMac > (/wiki/index.php?title=CompileOnMac)

#!/bin/bash

#ARCH=x86_64

#ARCH=i686

ARCH=$(arch)

MAIN_DIR=FreeCAD

BUILD_DIR=build

#FEDORA_VERSION=22

FEDORA_VERSION=23

#FEDORA_VERSION=24

echo "Installing packages required to build FreeCAD"

sudo dnf -y install gcc cmake gcc-c++ boost-devel zlib-devel swig eigen3 qt-devel \

shiboken shiboken-devel pyside-tools python-pyside python-pyside-devel xerces-c \

xerces-c-devel OCE-devel smesh graphviz python-pivy python-matplotlib tbb-devel \

 freeimage-devel Coin3 Coin3-devel med-devel vtk-devel

cd ~

mkdir $MAIN_DIR || { echo "~/$MAIN_DIR already exist. Quitting.."; exit; }

cd $MAIN_DIR

git clone https://github.com/FreeCAD/FreeCAD.git

mkdir $BUILD_DIR || { echo "~/$BUILD_DIR already exist. Quitting.."; exit; }

cd $BUILD_DIR

cmake ../FreeCAD && make

Updating the source code
FreeCAD development happens fast, everyday or so there are bug fixes or
new features. The cmake systems allows you to intelligently update the
source code, and only recompile what has changed, making subsequent
compilations very fast. Updating the source code with git or subversion is
very easy:

#Replace with the location where you cloned the source code the first time

cd freecad

#If you are using git

git pull

Move into the appropriate build directory and run cmake again (as cmake
updates the version number data for the Help menu, ...about FreeCAD),
however you do not need to add the path to source code after "cmake", just
a space and a dot:

#Replace with the location of the build directory

cd ../freecad-build

cmake .

make

Index (/wiki/index.php?title=Online_Help_Toc)

< translate> This page explains how to compile the latest FreeCAD source
code on Mac OS X.

Prerequisites
First of all, you will need to install the following software.

Xcode Development Tools

Unless you want to use the Xcode IDE for FreeCAD development, you will
only need to install the Command Line Tools. To do this on 10.9 and later,
open Terminal, run the following command, and then click Install in the
dialog that comes up.< /translate>

Page 178 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

xcode-select --install

<translate> For other versions of OS X, you can get the package from the
Apple developer downloads page
(https://developer.apple.com/downloads/index.action?q=xcode) (sign in
with the same Apple ID you use for other Apple services). Specifically, you
will need to download Development Tools 3.2 for OS X 10.6, and Command
Line Tools 4.8 for OS X 10.8.

Package Manager

You will want to use a package manager to install prerequisite software, this
page gives instructions for two of the common package managers in use for
OS X: Homebrew (http://brew.sh/) and MacPorts
(https://www.macports.org/). It's easiest to pick one package manager for
your system, and not have multiple package managers installed
concurrently. Currently (October 2015), Homebrew has more up-to-date
libraries relating to FreeCAD than MacPorts.
Homebrew

To install Homebrew, enter the following in Terminal:< /translate>

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

<translate>
MacPorts

To install MacPorts, follow the instructions from their website
(https://www.macports.org/install.php)

CMake

FreeCAD uses CMake (http://www.cmake.org/) to build the source.
Homebrew and MacPorts can install the command line version of CMake, or
if you prefer using a GUI application, install the latest version from
http://www.cmake.org/download (http://www.cmake.org/download).

For the command line version of CMake, from a terminal use either
Homebrew:< /translate>

brew install cmake

<translate> or MacPorts: < /translate>

sudo port install cmake

<translate>

Installing the Dependencies
All of the needed libraries can be installed using either Homebrew or
MacPorts.

Homebrew Dependencies

</translate>

brew tap homebrew/science

brew tap sanelson/freecad

brew install boost eigen freetype oce python qt pyside pyside-tools xerces-c boost-python

brew install --without-framework --without-soqt sanelson/freecad/coin

brew install --HEAD pivy

brew install --with-oce nglib

<translate>

MacPorts Dependencies

</translate>

sudo port install boost eigen3 freetype oce py27-pyside-tools xercesc Coin

Page 179 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

<translate>

Getting the source
In this guide, the source and build folders are created
in /Users/username/FreeCAD, but you can of course use whatever folder
you want.< /translate>

mkdir ~/FreeCAD

cd ~/FreeCAD

<translate> To get the FreeCAD source code, run:< /translate>

git clone https://github.com/FreeCAD/FreeCAD_sf_master.git FreeCAD-git

<translate>

Building FreeCAD
First, create a new folder for the build: < /translate>

mkdir ~/FreeCAD/build

<translate> Now you will need to run CMake to generate the build files.
Several options will need to be given to CMake, which can be accomplished
either with the CMake GUI application, or via the command line.

CMake Options

Name Value

BUILD_ROBOT 0 (unchecked)

CMAKE_BUILD_TYPE Release
FREECAD_USE_EXTERNAL_PIVY 1 (checked)

FREETYPE_INCLUDE_DIR_freetype2
/usr/local/include/freetype2 for
Homebrew, /opt/local/include/freetype2
for MacPorts

BUILD_FEM_NETGEN 1 (checked)

QT_QMAKE_EXECUTABLE /opt/local/libexec/qt4/bin/qmake

FREECAD_CREATE_MAC_APP 1 (checked)

Page 180 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: CompileOnUnix (/wiki/index.php?title=CompileOnUnix)
next: Third Party Libraries > (/wiki/index.php?
title=Third_Party_Libraries)

CMake GUI

Open the CMake app, and fill in the source and build folder fields. In this
case, it would be /Users/username/FreeCAD/FreeCAD-git for the source,
and /Users/username/FreeCAD/build for the build folder.

Next, click the Configure button to populate the list of configuration
options. This will display a dialog asking you to specify what generator to
use. Leave it at the default Unix Makefiles. Configuring will fail the first time
because there are some options that need to be changed. Note: You will
need to check the Advanced checkbox to get all of the options.

Set options from the table above, then click Configure again and then
Generate.

CMake command line

Open a terminal, cd in to the build directory that was created above. Run
cmake with options from the table above, following the formula -D(Name)
="(Value)", and the path to your FreeCAD source directory as the final
argument.< /translate>

$cd ~/FreeCAD/build

$cmake -DBUILD_ROBOT="0" ...options continue... -DFREECAD_CREATE_MAC_APP ="1" ../FreeCAD-git

<translate>

Make

Finally, from a terminal run make to compile FreeCAD.< /translate>

cd ~/FreeCAD/build

make –j3

<translate> The -j option specifies how many make processes to run at once.
One plus the number of CPU cores is usually a good number to use.
However, if compiling fails for some reason, it is useful to rerun make
without the -j option, so that you can see exactly where the error occurred.

If make finishes without any errors, you can now launch FreeCAD, either
from Terminal with ./bin/FreeCAD, or by double clicking the executable in
Finder.

Updating
FreeCAD development happens fast; everyday or so there are bug fixes or
new features. To get these changes, run: < /translate>

cd ~/FreeCAD/FreeCAD-git

git pull

<translate> And then repeat the compile step above.

Troubleshooting

Fortran

"No CMAKE_Fortran_COMPILER could be found." during configuration - Older
versions of FreeCAD will need a fortran compiler installed. With Homebrew,
do "brew install gcc" and try configuring again, for Macports, do "sudo port
install gcc49" and give cmake the path to Fortran ie
-DCMAKE_Fortran_COMPILER=/opt/local/bin/gfortran-mp-4.9 . Or,
preferably use a more current version of FreeCAD source!

OpenGL

See OpenGL on MacOS (/wiki/index.php?title=OpenGL_on_MacOS)

Page 181 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Index (/wiki/index.php?title=Online_Help_Toc)
</translate>

< translate>

Overview

These are libraries which are not changed in the FreeCAD project. They are
basically used unchanged as a dynamic link library (*.so or *.dll). If there is a
change necessary or a wrapper class is needed, then the code of the
wrapper or the changed library code has to be moved to the FreeCAD base
package. The used libraries are:

If you are using Windows, consider using LibPack instead of downloading
and installing all the stuff on your own.

Links

Link table

Lib name Version
needed Link to get it

Python >= 2.5.x http://www.python.org/
(http://www.python.org/)

OpenCasCade >= 5.2 http://www.opencascade.org
(http://www.opencascade.org)

Qt >= 4.1.x http://www.qtsoftware.com
(http://www.qtsoftware.com)

Coin3D >= 2.x http://www.coin3d.org
(http://www.coin3d.org)

SoQt >= 1.2 http://www.coin3d.org
(http://www.coin3d.org)

Xerces-C++ >= 2.7.x
< 3.0

http://xml.apache.org/xerces-c/
(http://xml.apache.org/xerces-c/)

Zlib >= 1.x.x http://www.zlib.net/ (http://www.zlib.net/)

Boost >=
1.33.x

http://www.boost.org/
(http://www.boost.org/)

Eigen3 >= 3.0.1

http://eigen.tuxfamily.org/index.php?
title=Main_Page
(http://eigen.tuxfamily.org/index.php?
title=Main_Page)

Shiboken >= 1.1.2 http://shiboken.readthedocs.org/en/latest/
(http://shiboken.readthedocs.org/en/latest/)

libarea N/A https://github.com/danielfalck/libarea
(https://github.com/danielfalck/libarea)

Details
Python

Version: 2.5 or higher

License: Python 2.5 license

Page 182 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

You can use the source or binary from http://www.python.org/
(http://www.python.org/) or use alternetivly ActiveState Python from
http://www.activestate.com/ (http://www.activestate.com/) though it is a
little bit hard to get the debug libs from ActiveState.
Description

Python is the primary scripting language and is used throughout the
application. For example:

◾ Implement test scripts for testing on:
◾ memory leaks
◾ ensure presents of functionality after changes
◾ post build checks
◾ test coverage tests

◾ Macros and macro recording
◾ Implement application logic for standard packages
◾ Implementation of whole workbenches
◾ Dynamic loading of packages
◾ Implementing rules for design (Knowledge engineering)
◾ Doing some fancy Internet stuff like work groups and PDM
◾ And so on ...

Especially the dynamic package loading of Python is used to load at run
time additional functionality and workbenches needed for the actual tasks.
For a closer look to Python see: www.python.org Why Python you may ask.
There are some reasons: So far I used different scripting languages in my
professional life:

◾ Perl
◾ Tcl/Tk
◾ VB
◾ Java

Python is more OO then Perl and Tcl, the code is not a mess like in Perl and
VB. Java isn't a script language in the first place and hard (or impossible) to
embed. Python is well documented and easy to embed and extend. It is also
well tested and has a strong back hold in the open source community.
Credits

Goes to Guido van Rossum and a lot of people made Python such a success!
OpenCasCade

Version: 5.2 or higher

License: OCTPL

OCC is a full-featured CAD Kernel. Originally, it's developed by Matra
Datavision in France for the Strim (Styler) and Euclid Quantum applications
and later on made Open Source. It's a really huge library and makes a free
CAD application possible in the first place, by providing some packages
which would be hard or impossible to implement in an Open Source project:

◾ A complete STEP compliant geometry kernel
◾ A topological data model and all needed functions to work on (cut, fuse,

extrude, and so on. . .)
◾ Standard Import- / Export processors like STEP, IGES, VRML
◾ 3D and 2D viewer with selection support
◾ A document and project data structure with support for save and

restore, external linking of documents, recalculation of design history

Page 183 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

(parametric modeling) and a facility to load new data types as an
extension package dynamically

To learn more about OpenCasCade take a look at the OpenCasCade page or
http://www.opencascade.org (http://www.opencascade.org).
Qt

Version: 4.1.x or higher

License: GPL v2.0/v3.0 or Commercial (from version 4.5 on also LPGL v2.1)

I don't think I need to tell a lot about Qt. It's one of the most often used GUI
toolkits in Open Source projects. For me the most important point to use Qt
is the Qt Designer and the possibility to load whole dialog boxes as a (XML)
resource and incorporate specialized widgets. In a CAX application the user
interaction and dialog boxes are by far the biggest part of the code and a
good dialog designer is very important to easily extend FreeCAD with new
functionality. Further information and a very good online documentation
you'll find on http://www.qtsoftware.com (http://www.qtsoftware.com).
Coin3D

Version: 2.0 or higher

License: GPL v2.0 or Commercial

Coin is a high-level 3D graphics library with a C++ Application Programming
Interface. Coin uses scenegraph data structures to render real-time graphics
suitable for mostly all kinds of scientific and engineering visualization
applications.

Coin is portable over a wide range of platforms: any UNIX / Linux / *BSD
platform, all Microsoft Windows operating system, and Mac OS X.

Coin is built on the industry-standard OpenGL immediate mode rendering
library, and adds abstractions for higher-level primitives, provides 3D
interactivity, immensely increases programmer convenience and
productivity, and contains many complex optimization features for fast
rendering that are transparent for the application programmer.

Coin is based on the SGI Open Inventor API. Open Inventor, for those who
are not familiar with it, has long since become the de facto standard
graphics library for 3D visualization and visual simulation software in the
scientific and engineering community. It has proved it's worth over a period
of more than 10 years, its maturity contributing to its success as a major
building block in thousands of large-scale engineering applications around
the world.

We will use OpenInventor as 3D viewer in FreeCAD because the
OpenCasCade viewer (AIS and Graphics3D) has serios limitations and
performace bottlenecks, especially when it goes in large-scale engineering
rendering. Other things like textures or volumetric rendering are not really
supported, and so on

Since Version 2.0 Coin uses a different licence model. It's not longer LGPL.
They use GPL for open source and a commercial licence for closed source.
That means if you want to sell your work based on FreeCAD (extension
modules) you need to purchase a Coin licence!
SoQt

Version: 1.2.0 or higher

License: GPL v2.0 or Commercial

SoQt is the Inventor binding to the Qt Gui Toolkit. Unfortunately, it's not
longer LGPL so we have to remove it from the code base of FreeCAD and link
it as a library. It has the same licence model like Coin. And you have to
compile it with your version of Qt.
Xerces-C++

Version: 2.7.0 or higher

License: Apache Software License Version 2.0

Page 184 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Xerces-C++ is a validating XML parser written in a portable subset of C++.
Xerces-C++ makes it easy to give your application the ability to read and
write XML data. A shared library is provided for parsing, generating,
manipulating, and validating XML documents.

Xerces-C++ is faithful to the XML 1.0 recommendation and many associated
standards (see Features below).

The parser provides high performance, modularity, and scalability. Source
code, samples and API documentation are provided with the parser. For
portability, care has been taken to make minimal use of templates, no RTTI,
and minimal use of #ifdefs.

The parser is used for saving and restoring parameters in FreeCAD.
Zlib

Version: 1.x.x

License: zlib License

zlib is designed to be a free, general-purpose, legally unencumbered -- that
is, not covered by any patents -- lossless data-compression library for use
on virtually any computer hardware and operating system. The zlib data
format is itself portable across platforms. Unlike the LZW compression
method used in Unix compress(1) and in the GIF image format, the
compression method currently used in zlib essentially never expands the
data. (LZW can double or triple the file size in extreme cases.) zlib's memory
footprint is also independent of the input data and can be reduced, if
necessary, at some cost in compression.
Boost

Version: 1.33.x

License: Boost Software License - Version 1.0

The Boost C++ libraries are a collection of peer-reviewed, open source
libraries that extend the functionality of C++. The libraries are licensed
under the Boost Software License, designed to allow Boost to be used with
both open and closed source projects. Many of Boost's founders are on the
C++ standard committee and several Boost libraries have been accepted for
incorporation into the Technical Report 1 of C++0x.

The libraries are aimed at a wide range of C++ users and application
domains. They range from general-purpose libraries like SmartPtr, to OS
Abstractions like FileSystem, to libraries primarily aimed at other library
developers and advanced C++ users, like MPL.

In order to ensure efficiency and flexibility, Boost makes extensive use of
templates. Boost has been a source of extensive work and research into
generic programming and meta-programming in C++.

See: http://www.boost.org/ (http://www.boost.org/) for details.
libarea

Version: N/A

License: New BSD (BSD 3-Clause)

Area is a piece of software created by Dan Heeks for HeeksCNC. It is
employed as a library for generation of CAM related operations in the Path
Workbench.

LibPack

LibPack is a convenient package with all the above libraries packed
together. It is currently available for the Windows platform on the Download
(/wiki/index.php?title=Download) page! If you're working under Linux you
don't need a LibPack, instead of you should make use of the package
repositories of your Linux distribution.
FreeCADLibs7.x Changelog

◾ Using QT 4.5.x and Coin 3.1.x

Page 185 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: CompileOnMac (/wiki/index.php?title=CompileOnMac)
next: Third Party Tools > (/wiki/index.php?title=Third_Party_Tools)

◾ Eigen template lib for Robot added
◾ SMESH experimental

Index (/wiki/index.php?title=Online_Help_Toc)
</translate>

< translate>

Tool Page
For every serious software development you need tools. Here is a list of
tools we use to develop FreeCAD:

Platform independend tools
Qt-Toolkit

The Qt-toolkit is a state of the art, plattform independend user interface
design tool. It is contained in the LibPack (/wiki/index.php?
title=Third_Party_Libraries) of FreeCAD, but can also be downloaded at Qt
project (http://qt-project.org/downloads).
InkScape

Great vector drawing programm. Adhers to the SVG standard and is used to
draw Icons and Pictures. Get it at www.inkscape.org
(http://www.inkscape.org).
Doxygen

A very good and stable tool to generate source documentation from the .h
and .cpp files.
The Gimp

Not much to say about the Gnu Image Manipulation Program. Besides it can
handle .xpm files which is a very convenient way to handle Icons in QT
Programms. XPM is basicly C-Code which can be compiled into a
programme.

Get the GIMP here: www.gimp.org (http://www.gimp.org/)

Tools on Windows
Visual Studio 8 Express

Although VC8 is for C++ development not really a step forward since
VisualStudio 6 (IMO a big step back), its a free development system on
Windows. For native Win32 applications you need to download the
PlatformSDK from M$.

So the Express edition is hard to find. But you might try this link
(http://msdn.microsoft.com/vstudio/express/visualc/default.aspx)
CamStudio

Is a Open Source tool to record Screencasts (Webcasts). Its a very good tool
to create tutorials by recording them. Its far not so boring as writing
documentation.

See camstudio.org (http://camstudio.org/) for details.

Tortoise SVN

This is a very great tool. It makes using Subversion (our version control
system on sf.net) a real pleasure. You can throught out the explorer
integration, easily manage Revisions, check on Diffs, resolve Confilcts, make
branches, and so on.... The commit dialog itself is a piece of art. It gives you

Page 186 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Third Party Libraries (/wiki/index.php?
title=Third_Party_Libraries)
next: Start up and Configuration > (/wiki/index.php?
title=Start_up_and_Configuration)

an overview over your changed files and allows you to put them in the
commit or not. That makes it easy to bundle the changes to logical units and
give them an clear commit message.

You find ToroiseSVN on tortoisesvn.tigris.org (http://tortoisesvn.tigris.org/).
StarUML

A full featured Open Source UML programm. It has a lot of features of the
big ones, including reverse engeniering C++ source code....

Download here: staruml.sourceforge.net
(http://staruml.sourceforge.net/en/)

Tools on Linux

TODO

Index (/wiki/index.php?title=Online_Help_Toc)
</translate>

< translate> This page shows the different ways to start FreeCAD and the
most important configuration features.

Starting FreeCAD from the Command line
FreeCAD can be started normally, by double-clicking on its desktop icon or
selecting it from the start menu, but it can also be started directly from the
command line. This allows you to change soem of the default startup
options.

Command line options

The command line options are subject of frequent changes, therefore it is a
good idea to check the current options by typing: < /translate>

FreeCAD --help

<translate> From the response you can read the possible
parameters:< /translate>

Usage:

FreeCAD [options] File1 File2

Allowed options:

Generic options:

 -v [--version] print version string

 -h [--help] print help message

 -c [--console] start in console mode

 --response-file arg can be specified with '@name', too

Configuration:

 -l [--write-log] arg write a log file to default location(Run FreeCAD --h to see default

 location)

 --log-file arg Unlike to --write-log this allows to log to an arbitrary file

 -u [--user-cfg] arg User config file to load/save user settings

 -s [--system-cfg] arg System config file to load/save system settings

 -t [--run-test] arg test level

 -M [--module-path] arg additional module paths

 -P [--python-path] arg additional python paths

EX: (Windows)

"C:\Program Files\FreeCAD 0.14\bin\FreeCAD.exe" -M "N:\FreeCAD\Mod\Draft" -M "N:\FreeCAD\Mod\P

art" -M "N:\FreeCAD\Mod\Drawing" -u "N:\FreeCAD\Config\user.cfg" -s "N:\FreeCAD\Config\system.

cfg"

Page 187 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

<translate>

Response and config files

FreeCAD can read some of these options from a config file. This file must be
in the bin path and must be named FreeCAD.cfg. Be aware that options
specified in the command line override the config file!

Some operating system have very low limit of the command line length. The
common way to work around those limitations is using response files. A
response file is just a configuration file which uses the same syntax as the
command line. If the command line specifies a name of response file to use,
it's loaded and parsed in addition to the command line:< /translate>

FreeCAD @ResponseFile.txt

<translate> or: < /translate>

FreeCAD --response-file=ResponseFile.txt

<translate>

Hidden options

There are a couple of options not visible to the user. These options are e.g.
the X-Window parameters parsed by the Windows system:

◾ -display display, sets the X display (default is $DISPLAY).
◾ -geometry geometry, sets the client geometry of the first window that is

shown.
◾ -fn or -font font, defines the application font. The font should be

specified using an X logical font description.
◾ -bg or -background color, sets the default background color and an

application palette (light and dark shades are calculated).
◾ -fg or -foreground color, sets the default foreground color.
◾ -btn or -button color, sets the default button color.
◾ -name name, sets the application name.
◾ -title title, sets the application title.
◾ -visual TrueColor, forces the application to use a TrueColor visual on an

8-bit display.
◾ -ncols count, limits the number of colors allocated in the color cube on

an 8-bit display, if the application is using the QApplication::ManyColor
color specification. If count is 216 then a 6x6x6 color cube is used (i.e. 6
levels of red, 6 of green, and 6 of blue); for other values, a cube
approximately proportional to a 2x3x1 cube is used.

◾ -cmap, causes the application to install a private color map on an 8-bit
display.

Running FreeCAD without User Interface
FreeCAD normally starts in GUI mode, but you can also force it to start in
console mode by typing: < /translate>

FreeCAD -c

<translate> from the command line. In console mode, no user interface will
be displayed, and you will be presented with a python interpreter prompt.
From that python prompt, you have the same functionality as the python
interpreter that runs inside the FreeCAD GUI, and normal access to all
modules and plugins of FreeCAD, excepted the FreeCADGui module. Be
aware that modules that depend on FreeCADGui might also be unavailable.

Page 188 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Running FreeCAD as a python module
FreeCAD can also be used to run as a python module inside other
applications that use python or from an external python shell. For that, the
host python application must know where your FreeCAD libs reside. The best
way to obtain that is to temporarily append FreeCAD's lib path to the
sys.path variable. The following code typed from any python shell will
import FreeCAD and let you run it the same way as in console mode:

</translate>

import sys

sys.path.append("path/to/FreeCAD/lib") # change this by your own FreeCAD lib path

import FreeCAD

<translate>

Once FreeCAD is loaded, it is up to you to make it interact with your host
application in any way you can imagine!

The Config set
On every Startup FreeCAD examines its surrounding and the command line
parameters. It builds up a configuration set which holds the essence of the
runtime information. This information is later used to determine the place
where to save user data or log files. It is also very important for post
postmortem analyzes. Therefore it is saved in the log file.

User related information

User config entries
Config var name Synopsis Example M$ Example Posix (Linux)

UserAppData

Path where
FreeCAD
stores User
Related
application
data.

C:\Documents and
Settings\username\Application
Data\FreeCAD

/home/username/.FreeCAD

UserParameter

File where
FreeCAD
stores User
Related
application
data.

C:\Documents and
Settings\username\Application
Data\FreeCAD\user.cfg

/home/username/.FreeCAD/user.cfg

SystemParameter

File where
FreeCAD
stores
Application
Related
data.

C:\Documents and
Settings\username\Application
Data\FreeCAD\system.cfg

/home/username/.FreeCAD/system.cfg

UserHomePath

Home path
of the
current
user

C:\Documents and
Settings\username\My
Documents

/home/username

Command line arguments

User config entries

Page 189 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Config var name Synopsis Example

LoggingFile

1 if the
logging is
switched
on

1

LoggingFileName

File name
where the
log is
placed

C:\Documents and
Settings\username\Application
Data\FreeCAD\FreeCAD.log

RunMode

This
indicates
how the
main loop
will work.
"Script"
means that
the given
script is
called and
then exit.
"Cmd" runs
the
command
line
interpreter.
"Internal"
runs an
internal
script.
"Gui"
enters the
Gui event
loop.
"Module"
loads a
given
python
module.

"Cmd"

FileName

Meaning
depends
on the
RunMode

ScriptFileName

Meaning
depends
on the
RunMode

Verbose
Verbosity
level of
FreeCAD

"" or "strict"

Page 190 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

OpenFileCount

Holds the
number of
files
opened
through
command
line
arguments

"12"

AdditionalModulePaths

Holds the
additional
Module
paths
given in
the cmd
line

"extraModules/"

System related

User config entries
Config var name Synopsis Example M$ Example Posix (Linux)

AppHomePath

Path
where
FreeCAD
is
installed

c:/Progam
Files/FreeCAD_0.7/user/local/FreeCAD_0.7

PythonSearchPath

Holds a
list of
paths
which
python
search
modules.
This is at
startup
can
change
during
execution

Some libraries need to call system environment variables. Sometimes when
there is a problem with a FreeCAD installation, it is because some
environment variable is absent or set wrongly. Therefore, some important
variables get duplicated in the Config and saved in the log file.

Python related environment variables:< /translate>

◾ PYTHONPATH
◾ PYTHONHOME
◾ TCL_LIBRARY
◾ TCLLIBPATH

<translate> OpenCascade related environment variables:< /translate>

Page 191 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

◾ CSF_MDTVFontDirectory
◾ CSF_MDTVTexturesDirectory
◾ CSF_UnitsDefinition
◾ CSF_UnitsLexicon
◾ CSF_StandardDefaults
◾ CSF_PluginDefaults
◾ CSF_LANGUAGE
◾ CSF_SHMessage
◾ CSF_XCAFDefaults
◾ CSF_GraphicShr
◾ CSF_IGESDefaults
◾ CSF_STEPDefaults

<translate> System related environment variables:< /translate>

◾ PATH
<translate>

Build related information

The table below shows the availible informations about the Build version.
Most of it comes from the Subversion repository. This stuff is needed to
exactly rebuild a version!

User config entries
Config var name Synopsis Example

BuildVersionMajor

Major Version
number of the Build.
Defined in
src/Build/Version.h.in

0

BuildVersionMinor

Minor Version
number of the Build.
Defined in
src/Build/Version.h.in

7

BuildRevision

SVN Repository
Revision number of
the src in the Build.
Generated by SVN

356

BuildRevisionRange Range of differnt
changes 123-356

BuildRepositoryURL Repository URL

https://free-
cad.svn.sourceforge.net/svnroot/free-
cad/trunk/src (https://free
cad.svn.sourceforge.net/svnroot/free-
cad/trunk/src)

BuildRevisionDate Date of the above
Revision 2007/02/03 22:21:18

BuildScrClean
Indicates if the
source was changed
ager checkout

Src modified

BuildScrMixed Src not mixed

Page 192 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Third Party Tools (/wiki/index.php?
title=Third_Party_Tools)
next: FreeCAD Build Tool > (/wiki/index.php?
title=FreeCAD_Build_Tool)

Branding related

These Config entries are related to the branding mechanism of FreeCAD. See
Branding (/wiki/index.php?title=Branding) for more details.

User config entries
Config var name Synopsis Example

ExeName

Name of the build
Executable file. Can diver
from FreeCAD if a different
main.cpp is used.

FreeCAD.exe

ExeVersion Over all Version shows up
at start time V0.7

AppIcon
Icon which is used for the
Executable, shows in
Application MainWindow.

"FCIcon"

ConsoleBanner Banner which is prompted
in console mode

SplashPicture Name of the Icon used for
the Splash Screen "FreeCADSplasher"

SplashAlignment Alignment of the Text in
the Splash dialog Left"

SplashTextColor Color of the splasher Text "#000000"

StartWorkbench
Name of the Workbech
which get started
automaticly after Startup

"Part design"

HiddenDockWindow
List of dockwindows
(separated by a semicolon)
which will be disabled

"Property editor"

Index (/wiki/index.php?title=Online_Help_Toc)
</translate>

< translate> The FreeCAD build tool or fcbt is a python script located
at< /translate>

 trunc/src/Tools/fcbt.py

<translate> It can be used to simplify some frequent tasks in building,
distributing and extending FreeCAD.

Usage
With Python (http://en.wikipedia.org/wiki/Python_
(programming_language)) correctly installed, fcbt can be invoked by the
command < /translate>

 python fbct.py

<translate> It displays a menu, where you can select the task you want to

Page 193 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Start up and Configuration (/wiki/index.php?
title=Start_up_and_Configuration)

next: Module Creation > (/wiki/index.php?title=Module_Creation)

use it for:< /translate>

FreeCAD Build Tool

 Usage:

 fcbt <command name> [command parameter]

 possible commands are:

 - DistSrc (DS) Build a source Distr. of the current source tree

 - DistBin (DB) Build a binary Distr. of the current source tree

 - DistSetup (DI) Build a Setup Distr. of the current source tree

 - DistSetup (DUI) Build a User Setup Distr. of the current source tree

 - DistAll (DA) Run all three above modules

 - NextBuildNumber (NBN) Increase the Build Number of this Version

 - CreateModule (CM) Insert a new FreeCAD Module in the module directory

 For help on the modules type:

 fcbt <command name> ?

<translate> At the input promt enter the abbreviated command you want to
call. For example type "CM" for creating a module (/wiki/index.php?
title=Module_Creation).

DistSrc

The command "DS" creates a source distribution of the current source tree.

DistBin

The command "DB" creates a binary distribution of the current source tree.

DistSetup

The command "DI" creates a setup distribution of the current source tree.

DistSetup

The command "DUI" creates a user setup distribution of the current source
tree.

DistAll

The command "DA" executes "DS", "DB" and "DI" in sequence.

NextBuildNumber

The "NBN" command increments the build number to create a new release
version of FreeCAD.

CreateModule

The "CM" command creates a new application module (/wiki/index.php?
title=Module_Creation).

Index (/wiki/index.php?title=Online_Help_Toc)
</translate>

< translate> Adding new modules and workbenches in FreeCAD is very easy.
We call module any extension of FreeCAD, while a workbench is a special
GUI configuration that groups some toolbars and menus. Usually you create
a new module which contains its own workbench.

Modules can be programmed in C++ or in python, or in a mixture of both,
but the module init files must be in python. Setting up a new module with
those init files is easy, and can be done either manually or with the FreeCAD
build tool.

Using the FreeCAD Build tool

Page 194 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Creating a new application module in FreeCAD is rather simple. In the
FreeCAD development tree exists the FreeCAD Build Tool (/wiki/index.php?
title=FreeCAD_Build_Tool) (fcbt) that does the most important things for
you. It is a Python (http://en.wikipedia.org/wiki/Python_
(programming_language)) script located under< /translate>

 trunk/src/Tools/fcbt.py

<translate> When your python interpreter is correctly installed you can
execute the script from a command line with< /translate>

 python fcbt.py

<translate> It will display the following menu:< /translate>

 FreeCAD Build Tool

 Usage:

 fcbt <command name> [command parameter]

 possible commands are:

 - DistSrc (DS) Build a source Distr. of the current source tree

 - DistBin (DB) Build a binary Distr. of the current source tree

 - DistSetup (DI) Build a Setup Distr. of the current source tree

 - DistSetup (DUI) Build a User Setup Distr. of the current source tree

 - DistAll (DA) Run all three above modules

 - BuildDoc (BD) Create the documentation (source docs)

 - NextBuildNumber (NBN) Increase the Build Number of this Version

 - CreateModule (CM) Insert a new FreeCAD Module in the module directory

 For help on the modules type:

 fcbt <command name> ?

<translate> At the command prompt enter CM to start the creation of a
module: < /translate>

 Insert command: ''CM''

<translate> You are now asked to specify a name for your new module. Lets
call it TestMod for example:< /translate>

 Please enter a name for your application: ''TestMod''

<translate> After pressing enter fcbt starts copying all necessary files for
your module in a new folder at< /translate>

 trunk/src/Mod/TestMod/

<translate> Then all files are modified with your new module name. The only
thing you need to do now is to add the two new projects "appTestMod" and
"appTestModGui" to your workspace (on Windows) or to your makefile
targets (unix). Thats it!

Setting up a new module manually
You need two things to create a new module:

◾ A new folder in the FreeCAD Mod folder (either in
InstalledPath/FreeCAD/Mod or in UserPath/.FreeCAD/Mod). You can
name it as you like.

◾ Inside that folder, an InitGui.py file. That file will be executed
automatically on FreeCAD start (for ex, put a print("hello world") inside)

Additionally, you can also put an Init.py file. The difference is, the InitGui.py
file is loaded only when FreeCAD runs in GUI mode, the Init.py file is loaded
always. But if we are going to make a workbench, we'll put it in InitGui.py,
because workbenches are used only in GUI mode, of course.

Creating a new workbench
Inside the InitGui.py file, one of the first thing you will want to do is to
define a workbench. Here is a minimal code that you can use:< /translate>

Page 195 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

 class MyWorkbench (Workbench):

"My workbench object"

Icon = """

/* XPM */

static const char *test_icon[]={

"16 16 2 1",

"a c #000000",

". c None",

"................",

"................",

"..############..",

"..############..",

"..############..",

"......####......",

"......####......",

"......####......",

"......####......",

"......####......",

"......####......",

"......####......",

"......####......",

"......####......",

"................",

"................"};

"""

MenuText = "My Workbench"

ToolTip = "This is my extraordinary workbench"

 def GetClassName(self):

 return "Gui::PythonWorkbench"

def Initialize(self):

import myModule1, myModule2

self.appendToolbar("My Tools", ["MyCommand1","MyCommand2"])

self.appendMenu("My Tools", ["MyCommand1","MyCommand2"])

Log ("Loading MyModule... done\n")

def Activated(self):

 # do something here if needed...

Msg ("MyWorkbench.Activated()\n")

def Deactivated(self):

 # do something here if needed...

Msg ("MyWorkbench.Deactivated()\n")

 FreeCADGui.addWorkbench(MyWorkbench)

<translate> The workbench must have all these attributes defined:

◾ The Icon attribute is an XPM image (Most software such as GIMP can
convert an image into xpm format, which is a text file. You can then
paste the contents here)

◾ MenuText is the workbench name as it appears in the workbenches list
◾ Tooltip appears when you hover on it with the mouse
◾ Initialize() is executed on FreeCAD load, and must create all menus and

toolbars that the workbench will use. If you are going to make your
module in C++, you can also define your menus and toolbars inside the
C++ module, not in this InitGui.py file. The important is that they are
created now, and not when the module is activated.

◾ Activated() is executed when the user switches to your workbench
◾ Deactivated() is executed when the user switches from yours to another

workbench or leaves FreeCAD

Creating FreeCAD commands in Python
Usually you define all your tools (called Commands in FreeCAD) in another
module, then import that module before creating the toolbars and menus.
This is a minimal code that you can use to define a command:< /translate>

Page 196 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: FreeCAD Build Tool (/wiki/index.php?
title=FreeCAD_Build_Tool)

next: Debugging > (/wiki/index.php?title=Debugging)

 import FreeCAD,FreeCADGui

 class MyTool:

"My tool object"

 def GetResources(self):

 return {"MenuText": "My Command",

 "Accel": "Ctrl+M",

 "ToolTip": "My extraordinary command",

 "Pixmap" : """

/* XPM */

static const char *test_icon[]={

"16 16 2 1",

"a c #000000",

". c None",

"................",

"................",

"..############..",

"..############..",

"..############..",

"......####......",

"......####......",

"......####......",

"......####......",

"......####......",

"......####......",

"......####......",

"......####......",

"......####......",

"................",

"................"};

"""}

 def IsActive(self):

 if FreeCAD.ActiveDocument == None:

 return False

 else:

 return True

def Activated(self):

 # do something here...

 FreeCADGui.addCommand('MyCommand1',MyTool())

<translate>

◾ The GetResources() method must return a dictionnary with visual
attributes of your tool. Accel defines a shortcut key but is not
mandatory.

◾ The IsActive() method defines if the command is active or greyed out in
menus and toolbars.

◾ The Activated() method is executed when the Command is called
through a toolbar button or menu or even by script.

Creating FreeCAD Commands in C++
To Be Documented

Links

◾ Some examples how power users have extended FreeCAD with various
custom external workbenches are collected in External workbenches
(/wiki/index.php?title=External_workbenches)

◾ Other example in Power user hub Workbench creation
(/wiki/index.php?title=Workbench_creation)

Index
(/wiki/index.php?title=Online_Help_Toc)

</translate>

Page 197 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< translate>

Test First
Before you go through the pain of debugging use the Test framework
(/wiki/index.php?title=Testing) to check if the standard tests work properly.
If they do not run complete there is possibly a broken installation.

Command Line
The debugging of FreeCAD is supported by a few internal mechanisms. The
command line version of FreeCAD provides some options for debugging
support.

These are the currently recognized options in FreeCAD 0.15:

Generic options:

 -v [--version] Prints version string

 -h [--help] Prints help message

 -c [--console] Starts in console mode

 --response-file arg Can be specified with '@name', too

Configuration:

 -l [--write-log] Writes a log file to:

 /home/graphos/.FreeCAD/FreeCAD.log

 --log-file arg Unlike to --write-log this allows to log to an

 arbitrary file

 -u [--user-cfg] arg User config file to load/save user settings

 -s [--system-cfg] arg Systen config file to load/save system settings

 -t [--run-test] arg Test level

 -M [--module-path] arg Additional module paths

 -P [--python-path] arg Additional python paths

Generating a Backtrace
If you are running a version of FreeCAD from the bleeding edge of the
development curve, it may "crash". You can help solve such problems by
providing the developers with a "backtrace". To do this, you need to be
running a "debug build" of the software. "Debug build" is a parameter that is
set at compile time, so you'll either need to compile FreeCAD yourself, or
obtain a pre-compiled "debug" version.

For Linux

Prerequisites:

◾ software package gdb installed
◾ a debug build of FreeCAD
◾ a FreeCAD model that causes a crash

Steps: Enter the following in your terminal window: < /translate>

$ cd FreeCAD/bin

$ gdb FreeCAD

GNUdebugger will output some initializing information. The (gdb) shows
GNUDebugger is running in the terminal, now input:

(gdb) handle SIG33 noprint nostop

(gdb) run

<translate> FreeCAD will now start up. Perform the steps that cause FreeCAD
to crash or freeze, then enter in the terminal window:

(gdb) bt

This will generate a lengthy listing of exactly what the program was doing
when it crashed or froze. Include this with your problem report.

Page 198 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Module Creation (/wiki/index.php?
title=Module_Creation)

next: Testing > (/wiki/index.php?title=Testing)

Python Debugging
Here is an example of using winpdb inside FreeCAD:

1. Run winpdb and set the password (e.g. test)
2. Create a Python file with this content

</translate>

 import rpdb2

 rpdb2.start_embedded_debugger("test")

 import FreeCAD

 import Part

 import Draft

 print "hello"

 print "hello"

 import Draft

 points=[FreeCAD.Vector(-3.0,-1.0,0.0),FreeCAD.Vector(-2.0,0.0,0.0)]

 Draft.makeWire(points,closed=False,face=False,support=None)

<translate>

1. Start FreeCAD and load the above file into FreeCAD
2. Press F6 to execute it
3. Now FreeCAD will become unresponsive because the Python

debugger is waiting
4. Switch to the Windpdb GUI and click on "Attach". After a few

seconds an item "<Input>" appears where you have to double-
click

5. Now the currently executed script appears in Winpdb.
6. Set a break at the last line and press F5
7. Now press F7 to step into the Python code of Draft.makeWire

Index
(/wiki/index.php?title=Online_Help_Toc)

</translate>

< translate> FreeCAD comes with an extensive testing framework. The testing
bases on a set of Python scripts which are located in the test module.

Introduction
This is the list of test apps as of 0.15 Git 4207:

TestAPP.All

Add test function

BaseTests

Add test function

UnitTests

Add test function

Document

Add test function

UnicodeTests

Add test function

Page 199 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Debugging (/wiki/index.php?title=Debugging)
next: Branding > (/wiki/index.php?title=Branding)

MeshTestsApp

Add test function

TestSketcherApp

Add test function

TestPartApp

Add test function

TestPartDesignApp

Add test function

Workbench

Add test function

Menu

Add test function

Menu.MenuDeleteCases

Add test function

Menu.MenuCreateCases

Add test function

Index

(/wiki/index.php?title=Online_Help_Toc)
</translate>

< translate> This article describes the Branding of FreeCAD. Branding means
to start your own application on base of FreeCAD. That can be only your own
executable or splash screen (/wiki/index.php?title=Splash_screen) till a
complete reworked program. On base of the flexible architecture of FreeCAD
it's easy to use it as base for your own special purpose program.

General

Most of the branding is done in the MainCmd.cpp or MainGui.cpp. These
Projects generate the executable files of FreeCAD. To make your own Brand
just copy the Main or MainGui projects and give the executable an own
name, e.g. FooApp.exe. The most important settings for a new look can be
made in one place in the main() function. Here is the code section that
controls the branding:

</translate>

Page 200 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

 int main(int argc, char ** argv)

 {

 // Name and Version of the Application

 App::Application::Config()["ExeName"] = "FooApp";

 App::Application::Config()["ExeVersion"] = "0.7";

 // set the banner (for loging and console)

 App::Application::Config()["CopyrightInfo"] = sBanner;

 App::Application::Config()["AppIcon"] = "FooAppIcon";

 App::Application::Config()["SplashScreen"] = "FooAppSplasher";

 App::Application::Config()["StartWorkbench"] = "Part design";

 App::Application::Config()["HiddenDockWindow"] = "Property editor";

 App::Application::Config()["SplashAlignment"] = "Bottom|Left";

 App::Application::Config()["SplashTextColor"] = "#000000"; // black

 // Inits the Application

 App::Application::Config()["RunMode"] = "Gui";

 App::Application::init(argc,argv);

 Gui::BitmapFactory().addXPM("FooAppSplasher", (const char**) splash_screen);

 Gui::Application::initApplication();

 Gui::Application::runApplication();

 App::Application::destruct();

 return 0;

 }

<translate> The first Config entry defines the program name. This is not the
executable name, which can be changed by renaming or by compiler
settings, but the name that is displayed in the task bar on windows or in the
program list on Unix systems.

The next lines define the Config entries of your FooApp Application. A
description of the Config and its entries you find in Start up and
Configuration (/wiki/index.php?title=Start_up_and_Configuration).

Images

Image resources are compiled into FreeCAD using Qt's resource system
(http://qt-project.org/doc/qt-4.8/resources.html). Therefore you have to
write a .qrc file, an XML-based file format that lists image files on the disk
but also any other kind of resource files. To load the compiled resources
inside the application you have to add a line< /translate>

 Q_INIT_RESOURCE(FooApp);

<translate> into the main() function. Alternatively, if you have an image in
XPM format you can directly include it into your main.cpp and add the
following line to register it:< /translate>

 Gui::BitmapFactory().addXPM("FooAppSplasher", (const char**) splash_screen);

<translate>

Branding XML

In FreeCAD there is also a method supported without writing a customized
main() function. For this method you must write a file name called
branding.xml and put it into the installation directory of FreeCAD. Here is an
example with all supported tags:< /translate>

Page 201 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Testing (/wiki/index.php?title=Testing)
next: Localisation > (/wiki/index.php?title=Localisation)

 <?xml version="1.0" encoding="utf-8"?>

 <Branding>

<Application>FooApp</Application>

<WindowTitle>Foo App in title bar</WindowTitle>

<BuildVersionMajor>1</BuildVersionMajor>

<BuildVersionMinor>0</BuildVersionMinor>

<BuildRevision>1234</BuildRevision>

<BuildRevisionDate>2014/1/1</BuildRevisionDate>

<CopyrightInfo>(c) My copyright</CopyrightInfo>

<MaintainerUrl>Foo App URL</MaintainerUrl>

<ProgramLogo>Path to logo (appears in bottom right corner)</ProgramLogo>

<WindowIcon>Path to icon file</WindowIcon>

<ProgramIcons>Path to program icons</ProgramIcons>

<SplashScreen>splashscreen.png</SplashScreen>

<SplashAlignment>Bottom|Left</SplashAlignment>

<SplashTextColor>#ffffff</SplashTextColor>

<SplashInfoColor>#c8c8c8</SplashInfoColor>

<StartWorkbench>PartDesignWorkbench</StartWorkbench>

 </Branding>

<translate> All of the listed tags are optional.

Index

(/wiki/index.php?title=Online_Help_Toc)
</translate>

< translate> Localisation is in general the process of providing a Software
with a multiple language user interface. In FreeCAD you can set the language
of the user interface under Edit→Preferences→Application. FreeCAD uses Qt
(http://en.wikipedia.org/wiki/Qt_(toolkit)) to enable multiple language
support. On Unix/Linux systems, FreeCAD uses the current locale settings of
your system by default.

Helping to translate FreeCAD
One of the very important things you can do for FreeCAD if you are not a
programmer, is to help to translate the program in your language. To do so
is now easier than ever, with the use of the Crowdin (http://crowdin.net)
collaborative on-line translation system.

How to Translate

◾ Go to the FreeCAD translation project page on Crowdin
(http://crowdin.net/project/freecad);

◾ Login by creating a new profile, or using a third-party account like your
GMail address;

◾ Click on the language you wish to work on;
◾ Start translating by clicking on the Translate button next to one of the

files. For example, FreeCAD.ts contains the text strings for the FreeCAD
main GUI.

◾ You can vote for existing translations, or you can create your own.
Note: If you are actively taking part in translating FreeCAD and want to be

informed before next release is ready to be launched,

so there is time to review your translation, please subscribe

to this issue: http://www.freecadweb.org/tracker/view.php?id=137 (http://www.freecadweb.org/tr

acker/view.php?id=137)

Page 202 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Translating with Qt-Linguist (old way)

Page 203 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Page 204 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

The following information doesn't need to be used anymore and
will likely become obsolete.
It is being kept here so that programmers may familiarize themselves with
how it works.

Page 205 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

◾ Open all of the language folders of FreeCAD shown below
◾ Verify that a .ts file with your language code doesn't exist ("fr" for

french, "de" for german, etc...)
◾ If it exists, you can download that file, if you want to

modify/review/better the translation (click the file, then download)
◾ If it doesn't exist, download the .ts file without language code (or any

other .ts available, it will work too)
◾ Rename that file with your language code
◾ Open it with the Qt-Linguist program
◾ Start translating (Qt Linguist is very easy to use)
◾ Once it's completely done, save your file
◾ send the files to us

(http://www.freecadweb.org/tracker/main_page.php) so we can
include them in the freecad source code so they benefit other users
too.

Available translation files

◾ FreeCAD main GUI (http://free-cad.svn.sourceforge.net/viewvc/free-
cad/trunk/src/Gui/Language/)

◾ Complete Workbench (http://free-
cad.svn.sourceforge.net/viewvc/free-
cad/trunk/src/Mod/Complete/Gui/Resources/translations/)

◾ Drawing Workbench (http://free-cad.svn.sourceforge.net/viewvc/free-
cad/trunk/src/Mod/Drawing/Gui/Resources/translations/)

◾ Draft Workbench (http://free-cad.svn.sourceforge.net/viewvc/free-
cad/trunk/src/Mod/Draft/Resources/translations/)

◾ Reverse Engineering Workbench (http://free-
cad.svn.sourceforge.net/viewvc/free-
cad/trunk/src/Mod/ReverseEngineering/Gui/Resources/translations/)

◾ FEM Workbench (http://free-cad.svn.sourceforge.net/viewvc/free-
cad/trunk/src/Mod/Fem/Gui/Resources/translations/)

◾ Robot Workbench (http://free-cad.svn.sourceforge.net/viewvc/free-
cad/trunk/src/Mod/Robot/Gui/Resources/translations/)

◾ Image Workbench (http://free-cad.svn.sourceforge.net/viewvc/free-
cad/trunk/src/Mod/Image/Gui/Resources/translations/)

◾ Sketcher Workbench (http://free-cad.svn.sourceforge.net/viewvc/free-
cad/trunk/src/Mod/Sketcher/Gui/Resources/translations/)

◾ Mesh Workbench (http://free-cad.svn.sourceforge.net/viewvc/free-
cad/trunk/src/Mod/Mesh/Gui/Resources/translations/)

◾ Test Workbench (http://free-cad.svn.sourceforge.net/viewvc/free-
cad/trunk/src/Mod/Test/Gui/Resources/translations/)

◾ Points Workbench (http://free-cad.svn.sourceforge.net/viewvc/free-
cad/trunk/src/Mod/Points/Gui/Resources/translations/)

◾ Raytracing Workbench (http://free-
cad.svn.sourceforge.net/viewvc/free-
cad/trunk/src/Mod/Raytracing/Gui/Resources/translations/)

◾ Part Workbench (http://free-cad.svn.sourceforge.net/viewvc/free-
cad/trunk/src/Mod/Part/Gui/Resources/translations/)

◾ PartDesign Workbench (http://free-
cad.svn.sourceforge.net/viewvc/free-
cad/trunk/src/Mod/PartDesign/Gui/Resources/translations/)

Page 206 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

◾ Assembly Workbench (http://free-
cad.svn.sourceforge.net/viewvc/free-
cad/trunk/src/Mod/Assembly/Gui/Resources/translations/)

◾ MeshPart Workbench (http://free-
cad.svn.sourceforge.net/viewvc/free-
cad/trunk/src/Mod/MeshPart/Gui/Resources/translations/)

Preparing your own modules/applications for translation

Prerequisites

To localise your application module your need to helpers that come with Qt.
You can download them from the Trolltech-Website
(http://www.trolltech.com/products/qt/downloads), but they are also
contained in the LibPack (/wiki/index.php?title=Third_Party_Libraries):

qmake
Generates project files
lupdate
Extracts or updates the original texts in your project by scanning
the source code
Qt-Linguist
The Qt-Linguist is very easy to use and helps you translating with
nice features like a phrase book for common sentences.

Project Setup

To start the localisation of your project go to the GUI-Part of you module
and type on the command line:< /translate>

qmake -project

<translate> This scans your project directory for files containing text strings
and creates a project file like the following example:< /translate>

 ##

 # Automatically generated by qmake (1.06c) Do 2. Nov 14:44:21 2006

 ##

 TEMPLATE = app

 DEPENDPATH += .\Icons

 INCLUDEPATH += .

 # Input

 HEADERS += ViewProvider.h Workbench.h

 SOURCES += AppMyModGui.cpp \

 Command.cpp \

 ViewProvider.cpp \

 Workbench.cpp

 TRANSLATIONS += MyMod_de.ts

<translate>

You can manually add files here. The section TRANSLATIONS contains a list
of files with the translation for each language. In the above example
MyMod_de.ts is the german translation.

Now you need to run lupdate to extract all string literals in your GUI.
Running lupdate after changes in the source code is allways safe since it
never deletes strings from your translations files. It only adds new strings.

Now you need to add the .ts-files to your VisualStudio project. Specifiy the
following custom build method for them:< /translate>

python ..\..\..\Tools\qembed.py "$(InputDir)\$(InputName).ts"

 "$(InputDir)\$(InputName).h" "$(InputName)"

<translate> Note: Enter this in one command line, the line break is only for

Page 207 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

layout purpose.

By compiling the .ts-file of the above example, a header file MyMod_de.h
is created. The best place to include this is in App<Modul>Gui.cpp. In our
example this would be AppMyModGui.cpp. There you add the
line< /translate>

new Gui::LanguageProducer("Deutsch", <Modul>_de_h_data, <Modul>_de_h_len);

<translate> to publish your translation in the application.

Setting up python files for translation

To ease localization for the py files you can use the tool "pylupdate4" which
accepts one or more py files. With the -ts option you can prepare/update
one or more .ts files. For instance to prepare a .ts file for French simply
enter into the command line:< /translate>

pylupdate4 *.py -ts YourModule_fr.ts

<translate> the pylupdate tool will scan your .py files for translate() or tr()
functions and create a YourModule_fr.ts file. That file can the be translated
with QLinguist and a YourModule_fr.qm file produced from QLinguist or with
the command < /translate>

lrelease YourModule_fr.ts

<translate> Beware that the pylupdate4 tool is not very good at recognizing
translate() functions, they need to be formatted very specifically (see the
Draft module files for examples). Inside your file, you can then setup a
translator like this (after loading your QApplication but BEFORE creating any
qt widget):< /translate>

translator = QtCore.QTranslator()

translator.load("YourModule_"+languages[ln])

QtGui.QApplication.installTranslator(translator)

<translate> Optionally, you can also create the file XML Draft.qrc with this
content: < /translate>

<RCC>

<qresource prefix="/translations" >

<file>Draft_fr.qm</file>

</qresource>

</RCC>

<translate> and running pyrcc4 Draft.qrc -o qrc_Draft.py creates a big
Python containing all resources. BTW this approach also works to put icon
files in one resource file

Translating the wiki
This wiki is hosting a lot of contents, the majority of which build up the
manual. You can browse the documentation starting from the Main Page
(/wiki/index.php?title=Main_Page), or have a look at the User's manual
Online Help Toc (/wiki/index.php?title=Online_Help_Toc).

Translation plugin

When the Wiki moved away from SourceForge, Yorik (/wiki/index.php?
title=User:Yorik) installed a Translation plugin
(http://www.mediawiki.org/wiki/Help:Extension:Translate) which allows to
ease translations between pages. For example, the page title can now be
translated. Other advantages of the Translation plugin are that it keeps
track of translations, notifies if the original page has been updated, and
maintains translations in sync with the original English page.

The tool is documented in Extension:Translate
(http://www.mediawiki.org/wiki/Help:Extension:Translate), and is part of a
Language Extension Bundle
(http://www.mediawiki.org/wiki/MediaWiki_Language_Extension_Bundle).

Page 208 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

To quickly get started on preparing a page for translation and activating the
plugin, please read the Page translation example
(http://www.mediawiki.org/wiki/Help:Extension:Translate/Page_translation_example)

To see an example of how the Translation tool works once the translation
plugin is activated on a page, you can visit the Main Page (/wiki/index.php?
title=Main_Page). You will see a new language menu bar at the bottom. It is
automatically generated. Click for instance on the German link, it will get
you to Main Page/de (/wiki/index.php?title=Main_Page/de). Right under the
title, you can read "This page is a translated version of a page Main Page
and the translation is xx% complete." (xx being the actual percentage of
translation). Click on the "translated version" link to start translation, or to
update or correct the existing translation.

You will notice that you cannot directly edit a page anymore once it's been
marked as a translation. You have to go through the translation utility.

When adding new content, the English page should be created first, then
translated into another language. If someone wants to change/add content
in a page, he should do the English one first.

It is recommended to have basic knowledge of wiki style formatting and
general guidelines of the FreeCAD wiki, because you will have to deal with
some tags while translating. You can find this information on WikiPages
(/wiki/index.php?title=WikiPages).

The sidebar (navigation menu on the left) is also translatable. Please follow
dedicated instructions on Localisation Sidebar (/wiki/index.php?
title=Localisation_Sidebar) page.

REMARK: The first time you switch a page to the new translation system, it
looses all its old 'manual' translations. To recover the translation, you
need to open an earlier version from the history, and copy/paste
manually the paragraphs to the new translation system.
Remark: to be able to translate in the wiki, you must of course gain wiki edit
permission (/wiki/index.php?
title=FAQ#How_can_I_get_edit_permission_on_the_wiki.3F).

If you are unsure how to proceed, don't hesitate to ask for help in the forum
(http://forum.freecadweb.org).

Page 209 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Branding (/wiki/index.php?title=Branding)
next: Extra python modules > (/wiki/index.php?
title=Extra_python_modules)

Old translation instructions

These instructions are for historical background only, while the
pages are being passed to the new translation plugin.
So the first step is to check if the manual translation has already been
started for your language (look in the left sidebar, under "manual").
If not, head to the forum (http://forum.freecadweb.org/) and say that you
want to start a new translation, we'll create the basic setup for the
language you want to work on.
You must then gain wiki edit permission (/wiki/index.php?
title=FAQ#How_can_I_get_edit_permission_on_the_wiki.3F).
If your language is already listed, see what pages are still missing a
translation (they will be listed in red). The technique is simple: go into a
red page, and copy/paste the contents of the corresponding English
page, and start translating.
Do not forget to include all the tags and templates from the original
English page. Some of those templates will have an equivalent in your
language (for example, there is a French Docnav template called
Docnav/fr). You should use a slash and your language code in almost all
the links. Look at other already translated pages to see how they did it.
Add a slash and your language code in the categories, like
[[Category:Developer Documentation/fr]]
And if you are unsure, head to the forums and ask people to check what
you did and tell you if it's right or not.
Four templates are commonly used in manual pages. These 4 templates
have localized versions (Template:Docnav/fr, Template:fr, etc...)

◾ Template:GuiCommand (/wiki/index.php?
title=Template:GuiCommand) : is the Gui Command information block
in upper-right of command documentation.

◾ Template:Docnav (/wiki/index.php?title=Template:Docnav) : it is the
navigation bar at the bottom of the pages, showing previous and next
pages.

Page Naming Convention
Please take note that, due to limitations in the Sourceforge
implementation of the MediaWiki engine, we require that your pages all
keep their original English counterpart's name, appending a slash and your
language code. For example, the translated page for About FreeCAD should
be About Freecad/es for Spanish, About FreeCAD/pl for polish, etc. The
reason is simple: so that if translators go away, the wiki's administrators,
who do not speak all languages, will know what these pages are for. This
will facilitate maintenance and avoid lost pages.
If you want the Docnav template to show linked pages in your language,
you can use redirect pages. They are basically shortcut links to the actual
page. Here is an example with the French page for About FreeCAD.

◾ The page About FreeCAD/fr is the page with content
◾ The page À propos de FreeCAD contains this code:

#REDIRECT [[About FreeCAD/fr]]

◾ In the About FreeCAD/fr page, the Docnav code will look like this:

{{docnav/fr|Bienvenue sur l'aide en ligne|Fonctionnalités}}

The page "Bienvenue sur l'aide en ligne" redirects to Online Help
Startpage/fr, and the page "Fonctionnalités" redirects to Feature list/fr.

Index

(/wiki/index.php?title=Online_Help_Toc)

Page 210 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

</translate>

< translate> This page lists several additional python modules or other
pieces of software that can be downloaded freely from the internet, and add
functionality to your FreeCAD installation.

PySide (previously PyQt4)

◾ homepage (PySide): http://qt-project.org/wiki/PySide (http://qt-
project.org/wiki/PySide)

◾ license: LGPL
◾ optional, but needed by several modules: Draft, Arch, Ship, Plot,

OpenSCAD, Spreadsheet
PySide (previously PyQt) is required by several modules of FreeCAD to
access FreeCAD's Qt interface. It is already bundled in the windows verison
of FreeCAD, and is usually installed automatically by FreeCAD on Linux, when
installing from official repositories. If those modules (Draft, Arch, etc) are
enabled after FreeCAD is installed, it means PySide (previously PyQt) is
already there, and you don't need to do anything more.

Note: FreeCAD progressively moved away from PyQt after version 0.13, in
favour of PySide (http://qt-project.org/wiki/PySide), which does exactly the
same job but has a license (LGPL) more compatible with FreeCAD.

Installation
Linux

The simplest way to install PySide is through your distribution's package
manager. On Debian/Ubuntu systems, the package name is generally
python-PySide, while on RPM-based systems it is named pyside. The
necessary dependencies (Qt and SIP) will be taken care of automatically.
Windows

The program can be downloaded from http://qt-
project.org/wiki/Category:LanguageBindings::PySide::Downloads (http://qt-
project.org/wiki/Category:LanguageBindings::PySide::Downloads) . You'll
need to install the Qt and SIP libraries before installing PySide (to be
documented).
MacOSX

PyQt on Mac can be installed via homebrew or port. See
CompileOnMac#Install_Dependencies (/wiki/index.php?
title=CompileOnMac#Install_Dependencies) for more information.

Usage

Once it is installed, you can check that everything is working by typing in
FreeCAD python console:< /translate>

import PySide

<translate> To access the FreeCAD interface, type :< /translate>

from PySide import QtCore,QtGui

FreeCADWindow = FreeCADGui.getMainWindow()

<translate> Now you can start to explore the interface with the dir()
command. You can add new elements, like a custom widget, with commands
like :< /translate>

FreeCADWindow.addDockWidget(QtCore.Qt.RghtDockWidgetArea,my_custom_widget)

<translate> Working with Unicode :< /translate>

text = text.encode('utf-8')

<translate> Working with QFileDialog and OpenFileName :< /translate>

Page 211 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

path = FreeCAD.ConfigGet("AppHomePath")

#path = FreeCAD.ConfigGet("UserAppData")

OpenName, Filter = PySide.QtGui.QFileDialog.getOpenFileName(None, "Read a txt file", path, "*.

txt")

<translate> Working with QFileDialog and SaveFileName :< /translate>

path = FreeCAD.ConfigGet("AppHomePath")

#path = FreeCAD.ConfigGet("UserAppData")

SaveName, Filter = PySide.QtGui.QFileDialog.getSaveFileName(None, "Save a file txt", path, "*.

txt")

<translate>

Example of transition from PyQt4 and PySide

PS: these examples of errors were found in the transition PyQt4 to PySide
and these corrections were made, other solutions are certainly available
with the examples above < /translate>

try:

 import PyQt4 # PyQt4

 from PyQt4 import QtGui ,QtCore # PyQt4

 from PyQt4.QtGui import QComboBox # PyQt4

 from PyQt4.QtGui import QMessageBox # PyQt4

 from PyQt4.QtGui import QTableWidget, QApplication # PyQt4

 from PyQt4.QtGui import * # PyQt4

 from PyQt4.QtCore import * # PyQt4

except Exception:

 import PySide # PySide

 from PySide import QtGui ,QtCore # PySide

 from PySide.QtGui import QComboBox # PySide

 from PySide.QtGui import QMessageBox # PySide

 from PySide.QtGui import QTableWidget, QApplication # PySide

 from PySide.QtGui import * # PySide

 from PySide.QtCore import * # PySide

<translate> To access the FreeCAD interface, type : You can add new
elements, like a custom widget, with commands like :< /translate>

myNewFreeCADWidget = QtGui.QDockWidget() # create a new dockwidget

myNewFreeCADWidget.ui = Ui_MainWindow() # myWidget_Ui() # load the Ui sc

ript

myNewFreeCADWidget.ui.setupUi(myNewFreeCADWidget) # setup the ui

try:

 app = QtGui.qApp # PyQt4 # the active qt window, = the freeca

d window since we are inside it

 FCmw = app.activeWindow() # PyQt4 # the active qt window, = the freeca

d window since we are inside it

 FCmw.addDockWidget(QtCore.Qt.RightDockWidgetArea,myNewFreeCADWidget) # add the widget to t

he main window

except Exception:

 FCmw = FreeCADGui.getMainWindow() # PySide # the active qt window, = the freec

ad window since we are inside it

 FCmw.addDockWidget(QtCore.Qt.RightDockWidgetArea,myNewFreeCADWidget) # add the widget to t

he main window

<translate> Working with Unicode : < /translate>

try:

 text = unicode(text, 'ISO-8859-1').encode('UTF-8') # PyQt4

except Exception:

 text = text.encode('utf-8') # PySide

<translate> Working with QFileDialog and OpenFileName :< /translate>

OpenName = ""

try:

 OpenName = QFileDialog.getOpenFileName(None,QString.fromLocal8Bit("Lire un fichier FCInfo

ou txt"),path,"*.FCInfo *.txt") # PyQt4

except Exception:

 OpenName, Filter = PySide.QtGui.QFileDialog.getOpenFileName(None, "Lire un fichier FCInfo

ou txt", path, "*.FCInfo *.txt")#PySide

<translate> Working with QFileDialog and SaveFileName :< /translate>

Page 212 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

SaveName = ""

try:

 SaveName = QFileDialog.getSaveFileName(None,QString.fromLocal8Bit("Sauver un fichier FCInf

o"),path,"*.FCInfo") # PyQt4

except Exception:

 SaveName, Filter = PySide.QtGui.QFileDialog.getSaveFileName(None, "Sauver un fichier FCInf

o", path, "*.FCInfo")# PySide

<translate> The MessageBox:< /translate>

def errorDialog(msg):

 diag = QtGui.QMessageBox(QtGui.QMessageBox.Critical,u"Error Message",msg)

 try:

 diag.setWindowFlags(PyQt4.QtCore.Qt.WindowStaysOnTopHint) # PyQt4 # this function sets

 the window before

 except Exception:

 diag.setWindowFlags(PySide.QtCore.Qt.WindowStaysOnTopHint)# PySide # this function set

s the window before

diag.setWindowModality(QtCore.Qt.ApplicationModal) # function has been disabled to

promote "WindowStaysOnTopHint"

 diag.exec_()

<translate> Working with setProperty (PyQt4) and setValue (PySide)
< /translate>

self.doubleSpinBox.setProperty("value", 10.0) # PyQt4

<translate> replace to :< /translate>

self.doubleSpinBox.setValue(10.0) # PySide

<translate> Working with setToolTip< /translate>

self.doubleSpinBox.setToolTip(_translate("MainWindow", "Coordinate placement Axis Y", None))

PyQt4

<translate> replace to :< /translate>

self.doubleSpinBox.setToolTip(_fromUtf8("Coordinate placement Axis Y")) # PySide

<translate> or :< /translate>

self.doubleSpinBox.setToolTip(u"Coordinate placement Axis Y.")# PySide

<translate>

Additional documentation

Some pyQt4 tutorials (including how to build interfaces with Qt Designer to
use with python):

◾ http://pyqt.sourceforge.net/Docs/PyQt4/classes.html
(http://pyqt.sourceforge.net/Docs/PyQt4/classes.html) - the PyQt4 API
Reference on sourceforge

◾ http://www.rkblog.rk.edu.pl/w/p/introduction-pyqt4/
(http://www.rkblog.rk.edu.pl/w/p/introduction-pyqt4/) - a simple
introduction

◾ http://www.zetcode.com/tutorials/pyqt4/
(http://www.zetcode.com/tutorials/pyqt4/) - very complete in-depth
tutorial

Pivy

◾ homepage: https://bitbucket.org/Coin3D/coin/wiki/Home
(https://bitbucket.org/Coin3D/coin/wiki/Home)

◾ license: BSD
◾ optional, but needed by several modules of FreeCAD: Draft, Arch

Page 213 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Pivy is a needed by several modules to access the 3D view of FreeCAD. On
windows, Pivy is already bundled inside the FreeCAD installer, and on Linux
it is usually automatically installed when you install FreeCAD from an official
repository. On MacOSX, unfortunately, you will need to compile pivy
yourself.

Installation
Prerequisites

I believe before compiling Pivy you will want to have Coin and SoQt
installed.

I found for building on Mac it was sufficient to install the Coin3 binary
package (http://www.coin3d.org/lib/plonesoftwarecenter_view). Attempting
to install coin from MacPorts was problematic: tried to add a lot of X
Windows packages and ultimately crashed with a script error.

For Fedora I found an RPM with Coin3.

SoQt compiled from source (http://www.coin3d.org/lib/soqt/releases/1.5.0)
fine on Mac and Linux.
Debian & Ubuntu

Starting with Debian Squeeze and Ubuntu Lucid, pivy will be available
directly from the official repositories, saving us a lot of hassle. In the
meantime, you can either download one of the packages we made (for
debian and ubuntu karmic) availables on the Download (/wiki/index.php?
title=Download) pages, or compile it yourself.

The best way to compile pivy easily is to grab the debian source package for
pivy and make a package with debuild. It is the same source code from the
official pivy site, but the debian people made several bug-fixing additions. It
also compiles fine on ubuntu karmic:
http://packages.debian.org/squeeze/python-pivy
(http://packages.debian.org/squeeze/python-pivy) download the .orig.gz
and the .diff.gz file, then unzip both, then apply the .diff to the source: go to
the unzipped pivy source folder, and apply the .diff patch: < /translate>

patch -p1 < ../pivy_0.5.0~svn765-2.diff

<translate> then< /translate>

debuild

<translate> to have pivy properly built into an official installable package.
Then, just install the package with gdebi.
Other linux distributions

First get the latest sources from the project's repository
(http://pivy.coin3d.org/mercurial/):< /translate>

hg clone http://hg.sim.no/Pivy/default Pivy

<translate> As of March 2012, the latest version is Pivy-0.5.

Then you need a tool called SWIG to generate the C++ code for the Python
bindings. Pivy-0.5 reports that it has only been tested with SWIG 1.3.31,
1.3.33, 1.3.35, and 1.3.40. So you can download a source tarball for one of
these old versions from http://www.swig.org (http://www.swig.org). Then
unpack it and from a command line do (as root):< /translate>

./configure

make

make install (or checkinstall if you use it)

<translate> It takes just a few seconds to build.

Alternatively, you can try building with a more recent SWIG. As of March
2012, a typical repository version is 2.0.4. Pivy has a minor compile problem
with SWIG 2.0.4 on Mac OS (see below) but seems to build fine on Fedora
Core 15.

Page 214 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

After that go to the pivy sources and call < /translate>

python setup.py build

<translate> which creates the source files. Note that build can produce
thousands of warnings, but hopefully there will be no errors.

This is probably obsolete, but you may run into a compiler error where a
'const char*' cannot be converted in a 'char*'. To fix that you just need to
write a 'const' before in the appropriate lines. There are six lines to fix.

After that, install by issuing (as root):< /translate>

python setup.py install (or checkinstall python setup.py install)

<translate> That's it, pivy is installed.
Mac OS

These instructions may not be complete. Something close to this worked for
OS 10.7 as of March 2012. I use MacPorts for repositories, but other options
should also work.

As for linux, get the latest source: < /translate>

hg clone http://hg.sim.no/Pivy/default Pivy

<translate> If you don't have hg, you can get it from MacPorts:< /translate>

port install mercurial

<translate> Then, as above you need SWIG. It should be a matter
of:< /translate>

port install swig

<translate> I found I needed also:< /translate>

port install swig-python

<translate> As of March 2012, MacPorts SWIG is version 2.0.4. As noted above
for linux, you might be better off downloading an older version. SWIG 2.0.4
seems to have a bug that stops Pivy building. See first message in this
digest: https://sourceforge.net/mailarchive/message.php?msg_id=28114815
(https://sourceforge.net/mailarchive/message.php?msg_id=28114815)

This can be corrected by editing the 2 source locations to add dereferences:
*arg4, *arg5 in place of arg4, arg5. Now Pivy should build: < /translate>

python setup.py build

sudo python setup.py install

<translate>
Windows

Assuming you are using Visual Studio 2005 or later you should open a
command prompt with 'Visual Studio 2005 Command prompt' from the Tools
menu. If the Python interpreter is not yet in the system path do< /translate>

set PATH=path_to_python_2.5;%PATH%

<translate> To get pivy working you should get the latest sources from the
project's repository:< /translate>

svn co https://svn.coin3d.org/repos/Pivy/trunk Pivy

<translate> Then you need a tool called SWIG to generate the C++ code for
the Python bindings. It is recommended to use version 1.3.25 of SWIG, not
the latest version, because at the moment pivy will only function correctly
with 1.3.25. Download the binaries for 1.3.25 from http://www.swig.org
(http://www.swig.org). Then unpack it and from the command line add it to
the system path< /translate>

Page 215 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

set PATH=path_to_swig_1.3.25;%PATH%

<translate> and set COINDIR to the appropriate path< /translate>

set COINDIR=path_to_coin

<translate> On Windows the pivy config file expects SoWin instead of SoQt
as default. I didn't find an obvious way to build with SoQt, so I modified the
file setup.py directly. In line 200 just remove the part 'sowin' : ('gui._sowin',
'sowin-config', 'pivy.gui.') (do not remove the closing parenthesis).

After that go to the pivy sources and call < /translate>

python setup.py build

<translate> which creates the source files. You may run into a compiler error
several header files couldn't be found. In this case adjust the INCLUDE
variable< /translate>

set INCLUDE=%INCLUDE%;path_to_coin_include_dir

<translate> and if the SoQt headers are not in the same place as the Coin
headers also < /translate>

set INCLUDE=%INCLUDE%;path_to_soqt_include_dir

<translate> and finally the Qt headers< /translate>

set INCLUDE=%INCLUDE%;path_to_qt4\include\Qt

<translate> If you are using the Express Edition of Visual Studio you may get
a python keyerror exception. In this case you have to modify a few things in
msvccompiler.py located in your python installation.

Go to line 122 and replace the line< /translate>

vsbase = r"Software\Microsoft\VisualStudio\%0.1f" % version

<translate> with< /translate>

vsbase = r"Software\Microsoft\VCExpress\%0.1f" % version

<translate> Then retry again. If you get a second error like < /translate>

error: Python was built with Visual Studio 2003;...

<translate> you must also replace line 128< /translate>

self.set_macro("FrameworkSDKDir", net, "sdkinstallrootv1.1")

<translate> with< /translate>

self.set_macro("FrameworkSDKDir", net, "sdkinstallrootv2.0")

<translate> Retry once again. If you get again an error like< /translate>

error: Python was built with Visual Studio version 8.0, and extensions need to be built with t

he same version of the compiler, but it isn't installed.

<translate> then you should check the environment variables
DISTUTILS_USE_SDK and MSSDK with< /translate>

echo %DISTUTILS_USE_SDK%

echo %MSSDK%

<translate> If not yet set then just set it e.g. to 1< /translate>

set DISTUTILS_USE_SDK=1

set MSSDK=1

Page 216 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

<translate> Now, you may run into a compiler error where a 'const char*'
cannot be converted in a 'char*'. To fix that you just need to write a 'const'
before in the appropriate lines. There are six lines to fix. After that copy the
generated pivy directory to a place where the python interpreter in FreeCAD
can find it.

Usage

To check if Pivy is correctly installed:< /translate>

import pivy

<translate> To have Pivy access the FreeCAD scenegraph do the following:
< /translate>

from pivy import coin

App.newDocument() # Open a document and a view

view = Gui.ActiveDocument.ActiveView

FCSceneGraph = view.getSceneGraph() # returns a pivy Python object that holds a SoSeparator, t

he main "container" of the Coin scenegraph

FCSceneGraph.addChild(coin.SoCube()) # add a box to scene

<translate> You can now explore the FCSceneGraph with the dir() command.

Additonal Documentation

Unfortunately documentation about pivy is still almost inexistant on the
net. But you might find Coin documentation useful, since pivy simply
translate Coin functions, nodes and methods in python, everything keeps
the same name and properties, keeping in mind the difference of syntax
between C and python:

◾ https://bitbucket.org/Coin3D/coin/wiki/Documentation
(https://bitbucket.org/Coin3D/coin/wiki/Documentation) - Coin3D API
Reference

◾ http://www-
evasion.imag.fr/~Francois.Faure/doc/inventorMentor/sgi_html/index.html
(http://www-
evasion.imag.fr/~Francois.Faure/doc/inventorMentor/sgi_html/index.html)
- The Inventor Mentor - The "bible" of Inventor scene description
language.

You can also look at the Draft.py file in the FreeCAD Mod/Draft folder, since
it makes big use of pivy.

pyCollada

◾ homepage: http://pycollada.github.com (http://pycollada.github.com)
◾ license: BSD
◾ optional, needed to enable import and export of Collada (.DAE) files

pyCollada is a python library that allow programs to read and write Collada
(*.DAE) (http://en.wikipedia.org/wiki/COLLADA) files. When pyCollada is
installed on your system, FreeCAD will be able to handle importing and
exporting in the Collada file format.

Installation

Pycollada is usually not yet available in linux distributions repositories, but
since it is made only of python files, it doesn't require compilation, and is
easy to install. You have 2 ways, or directly from the official pycollada git
repository, or with the easy_install tool.
Linux

In either case, you'll need the following packages already installed on your
system:< /translate>

Page 217 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

python-lxml

python-numpy

python-dateutil

<translate>
From the git repository

</translate>

git clone git://github.com/pycollada/pycollada.git pycollada

cd pycollada

sudo python setup.py install

<translate>
With easy_install

Assuming you have a complete python installation already, the easy_install
utility should be present already:< /translate>

easy_install pycollada

<translate> You can check if pycollada was correctly installed by issuing in a
python console: < /translate>

import collada

<translate> If it returns nothing (no error message), then all is OK
Windows

1. Install Python. While FreeCAD and some other programs come
with a bundled version of Python, having a fixed install will
help with the next steps. You can get Python here:
https://www.python.org/downloads/
(https://www.python.org/downloads/) . Of course you should
pick the right version, in this case that would be 2.6.X, as
FreeCAD currently uses 2.6.2 (Personally I went with 2.6.2, and
by the way, you can check the version yourself by starting the
Python.exe in the bin folder of FreeCAD). You'll also have to
add the path of the installation directory into the path
variable so you can access Python from the cmd. Now we can
install the missing things, in total there are 3 things we need
to install: numpy, setuptools, pycollada

2. Fetch numpy here:
http://sourceforge.net/projects/numpy/files/NumPy/
(http://sourceforge.net/projects/numpy/files/NumPy/) . Pick
a version which fits to the version used by FreeCAD, there are
multiple installers for different Python versions in every
numpy version folder, the installer will put numpy into the
folder of your Python installation, where FreeCAD can access it
as well

3. Fetch setuptools here:
https://pypi.python.org/pypi/setuptools
(https://pypi.python.org/pypi/setuptools) (We need to install
the setuptools in order to install pycollada in the next step)

4. Unzip the downloaded setuptools file somewhere
5. Start a cmd with admin permission
6. Navigate to the unpacked setuptools folder

Page 218 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

7. Install the setuptools by tipping "Python setup.py install" into
the cmd, this will not work when Python is not installed or
when the path variable hasn't been configured

8. Fetch pycollada here:
https://pypi.python.org/pypi/pycollada/
(https://pypi.python.org/pypi/pycollada/) (has already been
posted above) and once again:

9. Unzip the downloaded pycollada file somewhere
10. Start a cmd with admin permission, or use the one you

opened not long ago
11. Navigate to the unpacked pycollada folder
12. Install the setuptools by tipping "Python setup.py install" into

the cmd
◾ Another reference on how to use easy_install: http://jishus.org/?p=452

(http://jishus.org/?p=452)
Mac OS

If you are using the Homebrew build of FreeCAD you can install pycollada
into your system Python using pip.

If you need to install pip:< /translate>

$ sudo easy_install pip

<translate> Install pycollada:< /translate>

$ sudo pip install pycollada

<translate> If you are using a binary version of FreeCAD, you can tell pip to
install pycollada into the site-packages inside FreeCAD.app:< /translate>

$ pip install --target="/Applications/FreeCAD.app/Contents/lib/python2.7/site-packages" pycoll

ada

<translate>

IfcOpenShell

◾ homepage: http://www.ifcopenshell.org (http://www.ifcopenshell.org)
◾ license: LGPL
◾ optional, needed to extend import abilities of IFC files

IFCOpenShell is a library currently in development, that allows to import
(and soon export) Industry foundation Classes (*.IFC)
(http://en.wikipedia.org/wiki/Industry_Foundation_Classes) files. IFC is an
extension to the STEP format, and is becoming the standard in BIM
(http://en.wikipedia.org/wiki/Building_information_modeling) workflows.
When ifcopenshell is correctly installed on your system, the FreeCAD Arch
Module (/wiki/index.php?title=Arch_Module) will detect it and use it to
import IFC files, instead of its built-in rudimentary importer. Since
ifcopenshell is based on OpenCasCade, like FreeCAD, the quality of the
import is very high, producing high-quality solid geometry.

Installation

Since ifcopenshell is pretty new, you'll likely need to compile it yourself.
Linux

You will need a couple of development packages installed on your system in
order to compile ifcopenshell:< /translate>

Page 219 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

liboce-*-dev

python-dev

swig

<translate> but since FreeCAD requires all of them too, if you can compile
FreeCAD, you won't need any extra dependency to compile IfcOpenShell.

Grab the latest source code from here:< /translate>

svn co https://svn.code.sf.net/p/ifcopenshell/svn/trunk ifcopenshell ifcopenshell

<translate> or< /translate>

svn co https://ifcopenshell.svn.sourceforge.net/svnroot/ifcopenshell ifcopenshell

<translate> The build process is very easy:< /translate>

mkdir ifcopenshell-build

cd ifcopenshell-build

cmake ../ifcopenshell/cmake

<translate> or, if you are using oce instead of opencascade:< /translate>

cmake -DOCC_INCLUDE_DIR=/usr/include/oce ../ifcopenshell/cmake

<translate> Since ifcopenshell is made primarily for Blender, it uses python3
by default. To use it inside FreeCAD, you need to compile it against the same
version of python that is used by FreeCAD. So you might need to force the
python version with additional cmake parameters (adjust the python
version to yours): < /translate>

cmake -DOCC_INCLUDE_DIR=/usr/include/oce -DPYTHON_INCLUDE_DIR=/usr/include/python2.7 -DPYTHON_

LIBRARY=/usr/lib/python2.7.so ../ifcopenshell/cmake

<translate> Then:< /translate>

make

sudo make install

<translate> You can check that ifcopenshell was correctly installed by
issuing in a python console: < /translate>

import IfcImport

<translate> If it returns nothing (no error message), then all is OK
Windows

Copied from the IfcOpenShell README file
Users are advised to use the Visual Studio .sln file in the win/ folder. For
Windows users a prebuilt Open CASCADE version is available from the
http://opencascade.org (http://opencascade.org) website. Download and
install this version and provide the paths to the Open CASCADE header and
library files to MS Visual Studio C++.

For building the IfcPython wrapper, SWIG needs to be installed. Please
download the latest swigwin version from
http://www.swig.org/download.html (http://www.swig.org/download.html) .
After extracting the .zip file, please add the extracted folder to the PATH
environment variable. Python needs to be installed, please provide the
include and library paths to Visual Studio.

Teigha Converter

◾ homepage: http://www.opendesign.com/guestfiles/TeighaFileConverter
(http://www.opendesign.com/guestfiles/TeighaFileConverter)

◾ license: freeware
◾ optional, used to enable import and export of DWG files

Page 220 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

< previous: Localisation (/wiki/index.php?title=Localisation)
next: Source documentation > (/wiki/index.php?
title=Source_documentation)

The Teigha Converter is a small freely available utility that allows to convert
between several versions of DWG and DXF files. FreeCAD can use it to offer
DWG import and export, by converting DWG files to the DXF format under the
hood,then using its standard DXF importer to import the file contents. The
restrictions of the DXF importer (/wiki/index.php?title=Draft_DXF) apply.

Installation

On all platforms, only by installing the appropriate package from
http://www.opendesign.com/guestfiles/TeighaFileConverter
(http://www.opendesign.com/guestfiles/TeighaFileConverter) . After
installation, if the utility is not found automatically by FreeCAD, you might
need to set the path to the converter executable manually, in the menu Edit
-> Preferences -> Draft -> Import/Export options.

Index

(/wiki/index.php?title=Online_Help_Toc)
</translate>

Credits
FreeCAD would not be what it is without the generous contributions of many
people. Here's an overview of the people and companies who contributed to
FreeCAD over time. For credits for the third party libraries see the Third
Party Libraries (/wiki/index.php?title=Third_Party_Libraries) page.

Developement
Project managers

Lead developers of the FreeCAD project:

◾ Jürgen Riegel (/wiki/index.php?title=User:Jriegel)
◾ Werner Mayer (/wiki/index.php?title=User:Wmayer)
◾ Yorik van Havre (/wiki/index.php?title=User:Yorikvanhavre)

Main developers

People who work regularly on the FreeCAD code (retrieved from
https://github.com/FreeCAD/FreeCAD/graphs/contributors
(https://github.com/FreeCAD/FreeCAD/graphs/contributors)):

◾ Abdullah Tahiriyo (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=3232)

◾ Alexander Golubev (Fat-Zer)
(http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=4325)

◾ Bernd Hahnbach (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=2069)

◾ Brad Collette (sliptonic) (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=708)

◾ Daniel Falck (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=689)

◾ Eivind Kvedalen (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=1546)

◾ f3nix (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=6125)

◾ Ian Rees (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=3449)

Page 221 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

◾ Jan Rheinlaender (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=997)

◾ Jonathan Wiedemann (rockn)
(http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=681)

◾ Jose Luis Cercos Pita (sanguinariojoe)
(http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=574)

◾ Logari81 (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=270)

◾ Luke A. Parry (http://freecadamusements.blogspot.co.uk/)
◾ mdinger (http://forum.freecadweb.org/memberlist.php?

mode=viewprofile&u=2928)
◾ mghansen
◾ Przemo Firszt(PrzemoF) (http://forum.freecadweb.org/memberlist.php?

mode=viewprofile&u=3666)
◾ sgrogan (http://forum.freecadweb.org/memberlist.php?

mode=viewprofile&u=4252)
◾ shoogen (http://forum.freecadweb.org/memberlist.php?

mode=viewprofile&u=765)
◾ Stefan Tröger (ickby) (http://forum.freecadweb.org/memberlist.php?

mode=viewprofile&u=686)
◾ tanderson69 (blobfish) (http://forum.freecadweb.org/memberlist.php?

mode=viewprofile&u=208)
◾ vejmarie (http://forum.freecadweb.org/memberlist.php?

mode=viewprofile&u=7506)
◾ Victor Titov (DeepSOIC) (http://forum.freecadweb.org/memberlist.php?

mode=viewprofile&u=3888)
◾ wandererfan (http://forum.freecadweb.org/memberlist.php?

mode=viewprofile&u=1375)
Other coders

Other people who contributed code to the FreeCAD project:

◾ jmaustpc (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=611)

◾ j-dowsett (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=652)

◾ keithsloan52 (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=930)

◾ Joachim Zettler
◾ Graeme van der Vlugt
◾ Berthold Grupp
◾ Georg Wiora (/wiki/index.php?title=User:Xorx)
◾ Martin Burbaum
◾ Jacques-Antoine Gaudin
◾ Ken Cline
◾ Dmitry Chigrin
◾ Remigiusz Fiedler (DXF-parser)
◾ peterl94

Page 222 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

◾ jobermayr
◾ ovginkel
◾ triplus
◾ tomate44
◾ maurerpe
◾ Johan3DV
◾ Mandeep Singh
◾ fandaL
◾ jonnor
◾ usakhelo
◾ plaes
◾ SebKuzminsky
◾ jcc242
◾ ezzieyguywuf
◾ marktaff
◾ poutine70
◾ qingfengxia
◾ dbtayl
◾ itain
◾ Barleyman

Companies

Companies which donated code or developer time:

◾ Imetric 3D

Forum moderators

People in charge of the FreeCAD forum (http://forum.freecadweb.org)
(retrieved from http://forum.freecadweb.org/memberlist.php?mode=team
(http://forum.freecadweb.org/memberlist.php?mode=team)):

◾ Daniel Falck (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=689)

◾ DeepSOIC (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=3888)

◾ ediloren (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=1783)

◾ jmaustpc (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=611)

◾ jriegel (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=67)

◾ Logari81 (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=270)

◾ mrlukeparry (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=607)

◾ onesz (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=729)

◾ PrzemoF (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=3666)

Page 223 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

◾ r-frank (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=1529)

◾ Renato Rebelo (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=3315)

◾ rockn (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=681)

◾ shoogen (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=765)

◾ wmayer (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=69)

◾ yorik (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=68)

Community

People from the community who put a lot of efforts in helping the FreeCAD
project either by being active on the forum, keeping a blog about FreeCAD,
making video tutorials, packaging FreeCAD for Windows/Linux/MacOS X,
writing a FreeCAD book... (listed by alphabetical order) (retrieved from
http://forum.freecadweb.org/memberlist.php?
mode=&sk=d&sd=d#memberlist
(http://forum.freecadweb.org/memberlist.php?
mode=&sk=d&sd=d#memberlist))

◾ bejant (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=1940)

◾ Brad Collette (http://www.packtpub.com/freecad-solid-modeling-with-
python/book)

◾ cblt2l (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=251)

◾ cox (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=4523)

◾ Daniel Falck (http://opensourcedesigntools.blogspot.com/)
◾ Eduardo Magdalena (/wiki/index.php?title=User:Emagdalena)
◾ hobbes1069 (http://forum.freecadweb.org/memberlist.php?

mode=viewprofile&u=725)
◾ jdurston (5needinput) (http://www.youtube.com/user/5needinput)
◾ John Morris (butchwax) (http://forum.freecadweb.org/memberlist.php?

mode=viewprofile&u=861)
◾ Kwahooo (http://freecad-tutorial.blogspot.com/)
◾ lhagan (http://forum.freecadweb.org/memberlist.php?

mode=viewprofile&u=108)
◾ marcxs (http://forum.freecadweb.org/memberlist.php?

mode=viewprofile&u=1047)
◾ Mario52 (/wiki/index.php?title=User:Mario52)
◾ Normandc (/wiki/index.php?title=User:Normandc)
◾ peterl94 (http://forum.freecadweb.org/memberlist.php?

mode=viewprofile&u=1819)
◾ pperisin (http://forum.freecadweb.org/memberlist.php?

mode=viewprofile&u=356)
◾ Quick61 (/wiki/index.php?title=User:Quick61)
◾ Renatorivo (/wiki/index.php?title=User:Renatorivo)
◾ Rockn (/wiki/index.php?title=User:Rockn)

Page 224 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

◾ triplus (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=782)

◾ ulrich1a (http://forum.freecadweb.org/memberlist.php?
mode=viewprofile&u=1928)

Documentation writers

People who wrote the documentation on this wiki (/wiki/index.php?
title=Main_Page):

◾ Renato Rivoira (renatorivo)
◾ Honza32
◾ Hervé Blorec
◾ Eduardo Magdalena
◾ piffpoof
◾ Wurstwasser
◾ Roland Frank (r-frank)
◾ bejant
◾ Ediloren
◾ Isaac Ayala

Translators

People who helped to translate the FreeCAD application (retrieved from
https://crowdin.com/project/freecad
(https://crowdin.com/project/freecad)):

◾ Gerhard Scheepers
◾ wbrwbr2011
◾ hanhsuan
◾ hicarl
◾ fandaL
◾ Peta T
◾ Zdeněk Havlík
◾ Jodbe
◾ Peter Hageman
◾ Vilfredo
◾ Bruno Gonçalves Pirajá
◾ Timo Seppola
◾ rako
◾ Pasi Kukkola
◾ Ettore Atalan
◾ nikoss
◾ yang12
◾ totyg
◾ htsubota
◾ asakura
◾ Masaya Ootsuki
◾ Jiyong Choi
◾ Bartlomiej Niemiec
◾ trzyha

Page 225 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

◾ bluecd
◾ Miguel Morais
◾ Nicu Tofan
◾ Victor Radulescu
◾ Angelescu Constantin
◾ sema
◾ Николай Матвеев
◾ pinkpony
◾ Alexandre Prokoudine
◾ Марко Пејовић
◾ Marosh
◾ Peter Klofutar
◾ Raulshc
◾ javierMG
◾ Lars
◾ kunguz
◾ Igor
◾ Федір

Addons developers

Developers of FreeCAD addons (retrieved from
https://github.com/FreeCAD/FreeCAD-addons
(https://github.com/FreeCAD/FreeCAD-addons)):

◾ microelly2
◾ hamish2014
◾ jreinhardt
◾ jmwright
◾ cblt2l
◾ javierMG
◾ looooo
◾ shaise
◾ marmni
◾ Maaphoo
◾ Rentlau

Kategorien (/wiki/index.php?title=Special:Categories):
Pages with syntax highlighting errors (/wiki/index.php?
title=Category:Pages_with_syntax_highlighting_errors&action=edit&redlink=1)
User Documentation/en (/wiki/index.php?
title=Category:User_Documentation/en)
User Documentation (/wiki/index.php?
title=Category:User_Documentation)
Pages with broken file links (/wiki/index.php?
title=Category:Pages_with_broken_file_links)
Poweruser Documentation/en (/wiki/index.php?
title=Category:Poweruser_Documentation/en)
Poweruser Documentation (/wiki/index.php?
title=Category:Poweruser_Documentation)

Page 226 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

Python Code (/wiki/index.php?title=Category:Python_Code)
Tutorials (/wiki/index.php?title=Category:Tutorials)
Tutorials/en (/wiki/index.php?title=Category:Tutorials/en)
Python Code/en (/wiki/index.php?title=Category:Python_Code/en)
Developer Documentation (/wiki/index.php?
title=Category:Developer_Documentation)
Developer Documentation/en (/wiki/index.php?
title=Category:Developer_Documentation/en)
Developer (/wiki/index.php?title=Category:Developer)

Community
Github
(https://github.com/FreeCAD/FreeCAD)
Facebook
(https://www.facebook.com/FreeCAD)
Google+
(https://plus.google.com/u/0/communities/103183769032333474646)

Learn
Tutorials (/wiki/?
title=Tutorials)
Youtube videos
(https://www.youtube.com/results?
search_query=freecad)
Stack Exchange
(http://area51.stackexchange.com/proposals/88434/freecad)

Help the project
How can I help?
(/wiki/?
title=Help_FreeCAD)
♥ Donate! (/wiki/?
title=Donate)
Translate
(https://crowdin.com/project/freecad)

Code
Building from source
(/wiki/?
title=Compiling)
C++ & Python API
(/api/)
License information
(/wiki/?title=Licence)

Page 227 of 227Manual – FreeCAD Documentation

02.08.2016http://www.freecadweb.org/wiki/index.php?title=Manual

